You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Usage Warnings

Risk of Sensitive or Controversial Outputs“: This model’s safety filtering has been significantly reduced, potentially generating sensitive, controversial, or inappropriate content. Users should exercise caution and rigorously review generated outputs.
Not Suitable for All Audiences:“ Due to limited content filtering, the model’s outputs may be inappropriate for public settings, underage users, or applications requiring high security.
Legal and Ethical Responsibilities“: Users must ensure their usage complies with local laws and ethical standards. Generated content may carry legal or ethical risks, and users are solely responsible for any consequences.
Research and Experimental Use“: It is recommended to use this model for research, testing, or controlled environments, avoiding direct use in production or public-facing commercial applications.
Monitoring and Review Recommendations“: Users are strongly advised to monitor model outputs in real-time and conduct manual reviews when necessary to prevent the dissemination of inappropriate content.
No Default Safety Guarantees“: Unlike standard models, this model has not undergone rigorous safety optimization. huihui.ai bears no responsibility for any consequences arising from its use.

Log in or Sign Up to review the conditions and access this model content.

huihui-ai/Phi-4-mini-reasoning-abliterated

This is an uncensored version of microsoft/Phi-4-mini-reasoning created with abliteration (see remove-refusals-with-transformers to know more about it). This is a crude, proof-of-concept implementation to remove refusals from an LLM model without using TransformerLens.

Ablation was performed using a new and faster method, which yields better results.

ollama

You can use huihui_ai/phi4-reasoning-abliterated:3.8b directly,

ollama run huihui_ai/phi4-reasoning-abliterated:3.8b

Usage

You can use this model in your applications by loading it with Hugging Face's transformers library: You can try using /no_think to toggle think mode, but it’s not guaranteed to work every time.

from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextStreamer
import torch
import os
import signal

cpu_count = os.cpu_count()
print(f"Number of CPU cores in the system: {cpu_count}")
half_cpu_count = cpu_count // 2
os.environ["MKL_NUM_THREADS"] = str(half_cpu_count)
os.environ["OMP_NUM_THREADS"] = str(half_cpu_count)
torch.set_num_threads(half_cpu_count)

print(f"PyTorch threads: {torch.get_num_threads()}")
print(f"MKL threads: {os.getenv('MKL_NUM_THREADS')}")
print(f"OMP threads: {os.getenv('OMP_NUM_THREADS')}")

# Load the model and tokenizer
NEW_MODEL_ID = "huihui-ai/Phi-4-mini-reasoning-abliterated"
print(f"Load Model {NEW_MODEL_ID} ... ")
quant_config_4 = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.bfloat16,
    bnb_4bit_use_double_quant=True,
    llm_int14_enable_fp32_cpu_offload=True,
)

model = AutoModelForCausalLM.from_pretrained(
    NEW_MODEL_ID,
    device_map="auto",
    trust_remote_code=True,
    #quantization_config=quant_config_4,
    torch_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(NEW_MODEL_ID, trust_remote_code=True)
if tokenizer.pad_token is None:
    tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.eos_token_id

initial_messages = [{"role": "system", "content": "Your name is Phi, an AI math expert developed by Microsoft."}]
messages = initial_messages.copy()
enable_thinking = True
skip_prompt=True
skip_special_tokens=True

class CustomTextStreamer(TextStreamer):
    def __init__(self, tokenizer, skip_prompt=True, skip_special_tokens=True):
        super().__init__(tokenizer, skip_prompt=skip_prompt, skip_special_tokens=skip_special_tokens)
        self.generated_text = ""
        self.stop_flag = False

    def on_finalized_text(self, text: str, stream_end: bool = False):
        self.generated_text += text
        print(text, end="", flush=True)
        if self.stop_flag:
            raise StopIteration

    def stop_generation(self):
        self.stop_flag = True

def apply_chat_template(tokenizer, messages, enable_thinking):
    input_ids = tokenizer.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True,
    )
    if not enable_thinking:
        input_ids += "\n<think>\n\n</think>\n"
    return input_ids

def generate_stream(model, tokenizer, messages, enable_thinking, skip_prompt, skip_special_tokens, max_new_tokens):
    formatted_prompt = apply_chat_template(tokenizer, messages, enable_thinking)
    input_ids = tokenizer(
        formatted_prompt,
        return_tensors="pt",
        return_attention_mask=True,
        padding=False
    )
    
    tokens = input_ids['input_ids'].to(model.device)
    attention_mask = input_ids['attention_mask'].to(model.device)

    streamer = CustomTextStreamer(tokenizer, skip_prompt=skip_prompt, skip_special_tokens=skip_special_tokens)

    def signal_handler(sig, frame):
        streamer.stop_generation()
        print("\n[Generation stopped by user with Ctrl+C]")

    signal.signal(signal.SIGINT, signal_handler)
    
    print("Response: ", end="", flush=True)
    try:
        generated_ids = model.generate(
            tokens,
            attention_mask=attention_mask,
            use_cache=False,
            max_new_tokens=max_new_tokens,
            do_sample=True,
            pad_token_id=tokenizer.pad_token_id,
            streamer=streamer
        )
        del generated_ids
    except StopIteration:
        print("\n[Stopped by user]")

    del input_ids, attention_mask
    torch.cuda.empty_cache()
    signal.signal(signal.SIGINT, signal.SIG_DFL)

    return streamer.generated_text, streamer.stop_flag

while True:
    user_input = input("User: ").strip()
    if user_input.lower() == "/exit":
        print("Exiting chat.")
        break
    if user_input.lower() == "/clear":
        messages = initial_messages.copy()
        print("Chat history cleared. Starting a new conversation.")
        continue
    if user_input.lower() == "/no_think":
        if enable_thinking:
            enable_thinking = False
            print("Thinking = False.")
        else:
            enable_thinking = True
            print("Thinking = True.")        
        continue
    if user_input.lower() == "/skip_prompt":
        if skip_prompt:
            skip_prompt = False
            print("skip_prompt = False.")
        else:
            skip_prompt = True
            print("skip_prompt = True.")        
        continue
    if user_input.lower() == "/skip_special_tokens":
        if skip_special_tokens:
            skip_special_tokens = False
            print("skip_special_tokens = False.")
        else:
            skip_special_tokens = True
            print("skip_special_tokens = True.")        
        continue
    if not user_input:
        print("Input cannot be empty. Please enter something.")
        continue
    messages.append({"role": "user", "content": user_input})
    response, stop_flag = generate_stream(model, tokenizer, messages, enable_thinking, skip_prompt, skip_special_tokens, 14192)
    print("", flush=True)
    if stop_flag:
        continue
    messages.append({"role": "assistant", "content": response})

Donation

If you like it, please click 'like' and follow us for more updates.
You can follow x.com/support_huihui to get the latest model information from huihui.ai.

Your donation helps us continue our further development and improvement, a cup of coffee can do it.
  • bitcoin(BTC):
  bc1qqnkhuchxw0zqjh2ku3lu14hq145hc6gy1414uk70ge
Downloads last month
11
Safetensors
Model size
3.84B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 1 Ask for provider support

Model tree for huihui-ai/Phi-4-mini-reasoning-abliterated

Finetuned
(3)
this model