huihui-ai/Huihui-MoE-1B-A0.6B
Model Overview
Huihui-MoE-1B-A0.6B is a Mixture of Experts (MoE) language model developed by huihui.ai, built upon the Qwen/Qwen3-0.6B base model. It enhances the standard Transformer architecture by replacing MLP layers with MoE layers, each containing 3 experts, to achieve high performance with efficient inference. The model is designed for natural language processing tasks, including text generation, question answering, and conversational applications.
This version does not support ollama because tie_word_embeddings=True results in the absence of lm_head parameters being saved; therefore, ollama cannot be used. If ollama support is required, please choose the latest version huihui-ai/Huihui-MoE-1.2B-A0.6B.
- Architecture: Qwen3MoeForCausalLM model with 3 experts per layer (num_experts=3), activating 1 expert per token (num_experts_per_tok=1).
- Total Parameters: ~1.1 billion (1B)
- Activated Parameters: ~0.62 billion (0.6B) during inference, comparable to Qwen3-0.6B
- Developer: huihui.ai
- Release Date: June 2025
- License: Inherits the license of the Qwen3 base model (apache-2.0)
Expert Models:
Coding:
suayptalha/Qwen3-0.6B-Code-Expert
This model was fully fine-tuned with BF16 on first 20k rows of nvidia/OpenCodeReasoning
dataset for 1 epoch.
Math:
suayptalha/Qwen3-0.6B-Math-Expert
This model was fully fine-tuned with BF16 on entire unsloth/OpenMathReasoning-mini
dataset for 1 epoch.
Medical:
suayptalha/Qwen3-0.6B-Medical-Expert
This model was fully fine-tuned with BF16 on first 20k rows of FreedomIntelligence/medical-o1-reasoning-SFT
dataset for 1 epoch.
Instruction Following:
Qwen/Qwen3-0.6B
model was directly used for this expert, no fine-tune was applied.
Training
- Base Model: Qwen3-0.6B, pre-trained by the Qwen team, Experts, pre-trained by the Suayptalha team.
- Conversion: The model copies embeddings, self-attention, and normalization weights from Qwen3-0.6B, replacing MLP layers with MoE layers (3 experts). Gating weights are randomly initialized.
- Fine-Tuning: Not fine-tuned; users are recommended to fine-tune for specific tasks to optimize expert routing. The fine-tuned version is already available and can be referred to as huihui-ai/Huihui-MoE-1B-A0.6B-SFT.
Usage
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextStreamer
import torch
import os
import signal
cpu_count = os.cpu_count()
print(f"Number of CPU cores in the system: {cpu_count}")
half_cpu_count = cpu_count // 2
os.environ["MKL_NUM_THREADS"] = str(half_cpu_count)
os.environ["OMP_NUM_THREADS"] = str(half_cpu_count)
torch.set_num_threads(half_cpu_count)
print(f"PyTorch threads: {torch.get_num_threads()}")
print(f"MKL threads: {os.getenv('MKL_NUM_THREADS')}")
print(f"OMP threads: {os.getenv('OMP_NUM_THREADS')}")
# Load the model and tokenizer
NEW_MODEL_ID = "huihui-ai/Huihui-MoE-1B-A0.6B"
print(f"Load Model {NEW_MODEL_ID} ... ")
quant_config_4 = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
llm_int8_enable_fp32_cpu_offload=True,
)
model = AutoModelForCausalLM.from_pretrained(
NEW_MODEL_ID,
device_map="auto",
trust_remote_code=True,
#quantization_config=quant_config_4,
torch_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(NEW_MODEL_ID, trust_remote_code=True)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.eos_token_id
initial_messages = [{"role": "system", "content": "You are a helpful assistant."}]
messages = initial_messages.copy()
enable_thinking = True
skip_prompt=True
skip_special_tokens=True
class CustomTextStreamer(TextStreamer):
def __init__(self, tokenizer, skip_prompt=True, skip_special_tokens=True):
super().__init__(tokenizer, skip_prompt=skip_prompt, skip_special_tokens=skip_special_tokens)
self.generated_text = ""
self.stop_flag = False
def on_finalized_text(self, text: str, stream_end: bool = False):
self.generated_text += text
print(text, end="", flush=True)
if self.stop_flag:
raise StopIteration
def stop_generation(self):
self.stop_flag = True
def generate_stream(model, tokenizer, messages, enable_thinking, skip_prompt, skip_special_tokens, max_new_tokens):
input_ids = tokenizer.apply_chat_template(
messages,
tokenize=True,
enable_thinking = enable_thinking,
add_generation_prompt=True,
return_tensors="pt"
)
attention_mask = torch.ones_like(input_ids, dtype=torch.long)
tokens = input_ids.to(model.device)
attention_mask = attention_mask.to(model.device)
streamer = CustomTextStreamer(tokenizer, skip_prompt=skip_prompt, skip_special_tokens=skip_special_tokens)
def signal_handler(sig, frame):
streamer.stop_generation()
print("\n[Generation stopped by user with Ctrl+C]")
signal.signal(signal.SIGINT, signal_handler)
print("Response: ", end="", flush=True)
try:
generated_ids = model.generate(
tokens,
attention_mask=attention_mask,
#use_cache=False,
max_new_tokens=max_new_tokens,
do_sample=True,
pad_token_id=tokenizer.pad_token_id,
streamer=streamer
)
del generated_ids
except StopIteration:
print("\n[Stopped by user]")
del input_ids, attention_mask
torch.cuda.empty_cache()
signal.signal(signal.SIGINT, signal.SIG_DFL)
return streamer.generated_text, streamer.stop_flag
while True:
user_input = input("User: ").strip()
if user_input.lower() == "/exit":
print("Exiting chat.")
break
if user_input.lower() == "/clear":
messages = initial_messages.copy()
print("Chat history cleared. Starting a new conversation.")
continue
if user_input.lower() == "/nothink":
if enable_thinking:
enable_thinking = False
print("Thinking = False.")
else:
enable_thinking = True
print("Thinking = True.")
continue
if user_input.lower() == "/skip_prompt":
if skip_prompt:
skip_prompt = False
print("skip_prompt = False.")
else:
skip_prompt = True
print("skip_prompt = True.")
continue
if user_input.lower() == "/skip_special_tokens":
if skip_special_tokens:
skip_special_tokens = False
print("skip_special_tokens = False.")
else:
skip_special_tokens = True
print("skip_special_tokens = True.")
continue
if not user_input:
print("Input cannot be empty. Please enter something.")
continue
messages.append({"role": "user", "content": user_input})
response, stop_flag = generate_stream(model, tokenizer, messages, enable_thinking, skip_prompt, skip_special_tokens, 14192)
print("", flush=True)
if stop_flag:
continue
messages.append({"role": "assistant", "content": response})
Applications
- Text Generation: Articles, dialogues, and creative writing.
- Question Answering: Information retrieval and query resolution.
- Conversational AI: Multi-turn dialogues for chatbots.
- Research: Exploration of MoE architectures and efficient model scaling.
Limitations
- Fine-Tuning Required: Randomly initialized gating weights may lead to suboptimal expert utilization without fine-tuning.
- Compatibility: Developed with transformers 4.52.4; ensure matching versions to avoid loading issues.
- Inference Speed: While efficient for an MoE model, performance depends on hardware (GPU recommended).
Ethical Considerations
- Bias: Inherits potential biases from the Qwen3-0.6B base model; users should evaluate outputs for fairness.
- Usage: Intended for research and responsible applications; avoid generating harmful or misleading content.
Contact
- Developer: huihui.ai
- Repository: huihui-ai/Huihui-MoE-1B-A0.6B (available locally or on Hugging Face)
- Issues: Report bugs or request features via the repository or please send an email to [email protected]
Acknowledgments
- Built upon the Qwen3-0.6B model by the Qwen team.
- Built upon the Experts model by the Suayptalha team.
- Powered by the Hugging Face transformers library.
- Downloads last month
- 31
Model tree for huihui-ai/Huihui-MoE-1B-A0.6B
Base model
Qwen/Qwen3-0.6B-Base