You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

huihui-ai/DeepSeek-V3-abliterated

This is an uncensored version of deepseek-ai/DeepSeek-V3 created with abliteration (see remove-refusals-with-transformers to know more about it).
This is a crude, proof-of-concept implementation to remove refusals from an LLM model without using TransformerLens.

Note

All files have been uploaded. If you have already downloaded it before, please download again to automatically get any missing files.

huggingface-cli download huihui-ai/DeepSeek-V3-abliterated --local-dir ./huihui-ai/DeepSeek-V3-abliterated --token hf_xxxx 

The next goal is deepseek-ai/DeepSeek-V3-0324.

Use with ollama

You can use huihui_ai/deepseek-v3-abliterated directly

ollama run huihui_ai/deepseek-v3-abliterated

Q4_K_M, Q3_K_M, Q2_K have been uploaded.

Use with transformers

from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextStreamer
import torch
import os
import signal

cpu_count = os.cpu_count()
print(f"Number of CPU cores in the system: {cpu_count}")
half_cpu_count = cpu_count // 2
os.environ["MKL_NUM_THREADS"] = str(half_cpu_count)
os.environ["OMP_NUM_THREADS"] = str(half_cpu_count)
torch.set_num_threads(half_cpu_count)

print(f"PyTorch threads: {torch.get_num_threads()}")
print(f"MKL threads: {os.getenv('MKL_NUM_THREADS')}")
print(f"OMP threads: {os.getenv('OMP_NUM_THREADS')}")

NEW_MODEL_ID = "huihui-ai/DeepSeek-V3-abliterated"
print(f"Load Model {NEW_MODEL_ID} ... ")
quant_config_4 = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.bfloat16,
    bnb_4bit_use_double_quant=True,
    llm_int8_enable_fp32_cpu_offload=True,
)

# Single RTX 4090
NUM_TRANS_LAYERS = 61

def create_device_map():
    device_map = {
        'model.embed_tokens': 0,
        'model.norm': 0,
        'model.rotary_emb': 0,
        'lm_head': 0
    }
    for start, end, gpu_id in [(0, 5, 0)]:
        for i in range(start, end):
            device_map[f'model.layers.{i}'] = gpu_id
    
    for i in range(5, NUM_TRANS_LAYERS):
        device_map[f'model.layers.{i}'] = "cpu"

    return device_map

device_map = create_device_map()

model = AutoModelForCausalLM.from_pretrained(
    NEW_MODEL_ID,
    device_map=device_map,
    trust_remote_code=True,
    quantization_config=quant_config_4,
    torch_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(NEW_MODEL_ID, trust_remote_code=True)
if tokenizer.pad_token is None:
    tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.eos_token_id

initial_messages = [{"role": "system", "content": "You are a helpful assistant."}]
messages = initial_messages.copy()

class CustomTextStreamer(TextStreamer):
    def __init__(self, tokenizer, skip_prompt=True, skip_special_tokens=True):
        super().__init__(tokenizer, skip_prompt=skip_prompt, skip_special_tokens=skip_special_tokens)
        self.generated_text = ""
        self.stop_flag = False

    def on_finalized_text(self, text: str, stream_end: bool = False):
        self.generated_text += text
        print(text, end="", flush=True)
        if self.stop_flag:
            raise StopIteration

    def stop_generation(self):
        self.stop_flag = True

def generate_stream(model, tokenizer, messages, max_new_tokens):
    input_ids = tokenizer.apply_chat_template(
        messages,
        tokenize=True,
        add_generation_prompt=True,
        return_tensors="pt"
    )
    attention_mask = torch.ones_like(input_ids, dtype=torch.long)
    tokens = input_ids.to(model.device) 
    attention_mask = attention_mask.to(model.device)

    streamer = CustomTextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)

    def signal_handler(sig, frame):
        streamer.stop_generation()
        print("\n[Generation stopped by user with Ctrl+C]")

    signal.signal(signal.SIGINT, signal_handler)
    
    print("Response: ", end="", flush=True)
    try:
        generated_ids = model.generate(
            tokens,
            attention_mask=attention_mask,
            use_cache=False,
            max_new_tokens=max_new_tokens,
            do_sample=True,
            pad_token_id=tokenizer.pad_token_id,
            streamer=streamer
        )
        del generated_ids
    except StopIteration:
        print("\n[Stopped by user]")

    del input_ids, attention_mask
    torch.cuda.empty_cache()
    signal.signal(signal.SIGINT, signal.SIG_DFL)

    return streamer.generated_text, streamer.stop_flag

while True:
    user_input = input("User: ").strip()
    if user_input.lower() == "/exit":
        print("Exiting chat.")
        break
    if user_input.lower() == "/clear":
        messages = initial_messages.copy()
        print("Chat history cleared. Starting a new conversation.")
        continue
    if not user_input:
        print("Input cannot be empty. Please enter something.")
        continue
    messages.append({"role": "user", "content": user_input})
    response, stop_flag = generate_stream(model, tokenizer, messages, 8192)
    if stop_flag:
        continue
    messages.append({"role": "assistant", "content": response})

Donation

If you like it, please click 'like' and follow us for more updates.
You can follow x.com/support_huihui to get the latest model information from huihui.ai.

Your donation helps us continue our further development and improvement, a cup of coffee can do it.
  • bitcoin(BTC):
  bc1qqnkhuchxw0zqjh2ku3lu4hq45hc6gy84uk70ge
Downloads last month
86
Safetensors
Model size
671B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for huihui-ai/DeepSeek-V3-abliterated

Finetuned
(77)
this model

Collection including huihui-ai/DeepSeek-V3-abliterated