DeepSeek-Pruned
Collection
3 items
•
Updated
This is a pruned version of the deepseek-ai/DeepSeek-V3-0324, reduced from 256 experts to 160 experts. The pruned model is mainly used for code generation.
This is a test validation to see if we can prune the model according to professional requirements and still maintain acceptable performance. The model size has been reduced by about 1/3, and no distortion has occurred.
This allows the model to be pruned according to one's needs.
This pruned model has a total parameter is equivalent to 441B.
You can use huihui_ai/deepseek-v3-pruned directly
ollama run huihui_ai/deepseek-v3-pruned:411b-coder-0324
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextStreamer
import torch
import os
import signal
cpu_count = os.cpu_count()
print(f"Number of CPU cores in the system: {cpu_count}")
half_cpu_count = cpu_count // 2
os.environ["MKL_NUM_THREADS"] = str(half_cpu_count)
os.environ["OMP_NUM_THREADS"] = str(half_cpu_count)
torch.set_num_threads(half_cpu_count)
print(f"PyTorch threads: {torch.get_num_threads()}")
print(f"MKL threads: {os.getenv('MKL_NUM_THREADS')}")
print(f"OMP threads: {os.getenv('OMP_NUM_THREADS')}")
NEW_MODEL_ID = "huihui-ai/DeepSeek-V3-0324-Pruned-Coder-411B"
print(f"Load Model {NEW_MODEL_ID} ... ")
quant_config_4 = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
llm_int8_enable_fp32_cpu_offload=True,
)
# Single RTX 4090
NUM_TRANS_LAYERS = 61
def create_device_map():
device_map = {
'model.embed_tokens': 0,
'model.norm': 0,
'model.rotary_emb': 0,
'lm_head': 0
}
for start, end, gpu_id in [(0, 5, 0)]:
for i in range(start, end):
device_map[f'model.layers.{i}'] = gpu_id
for i in range(5, NUM_TRANS_LAYERS):
device_map[f'model.layers.{i}'] = "cpu"
return device_map
device_map = create_device_map()
model = AutoModelForCausalLM.from_pretrained(
NEW_MODEL_ID,
device_map=device_map,
trust_remote_code=True,
quantization_config=quant_config_4,
torch_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(NEW_MODEL_ID, trust_remote_code=True)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.eos_token_id
initial_messages = [{"role": "system", "content": "You are a helpful assistant."}]
messages = initial_messages.copy()
class CustomTextStreamer(TextStreamer):
def __init__(self, tokenizer, skip_prompt=True, skip_special_tokens=True):
super().__init__(tokenizer, skip_prompt=skip_prompt, skip_special_tokens=skip_special_tokens)
self.generated_text = ""
self.stop_flag = False
def on_finalized_text(self, text: str, stream_end: bool = False):
self.generated_text += text
print(text, end="", flush=True)
if self.stop_flag:
raise StopIteration
def stop_generation(self):
self.stop_flag = True
def generate_stream(model, tokenizer, messages, max_new_tokens):
input_ids = tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt"
)
attention_mask = torch.ones_like(input_ids, dtype=torch.long)
tokens = input_ids.to(model.device)
attention_mask = attention_mask.to(model.device)
streamer = CustomTextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
def signal_handler(sig, frame):
streamer.stop_generation()
print("\n[Generation stopped by user with Ctrl+C]")
signal.signal(signal.SIGINT, signal_handler)
print("Response: ", end="", flush=True)
try:
generated_ids = model.generate(
tokens,
attention_mask=attention_mask,
use_cache=False,
max_new_tokens=max_new_tokens,
do_sample=True,
pad_token_id=tokenizer.pad_token_id,
streamer=streamer
)
del generated_ids
except StopIteration:
print("\n[Stopped by user]")
del input_ids, attention_mask
torch.cuda.empty_cache()
signal.signal(signal.SIGINT, signal.SIG_DFL)
return streamer.generated_text, streamer.stop_flag
while True:
user_input = input("User: ").strip()
if user_input.lower() == "/exit":
print("Exiting chat.")
break
if user_input.lower() == "/clear":
messages = initial_messages.copy()
print("Chat history cleared. Starting a new conversation.")
continue
if not user_input:
print("Input cannot be empty. Please enter something.")
continue
messages.append({"role": "user", "content": user_input})
response, stop_flag = generate_stream(model, tokenizer, messages, 8192)
if stop_flag:
continue
messages.append({"role": "assistant", "content": response})
If you like it, please click 'like' and follow us for more updates.
You can follow x.com/support_huihui to get the latest model information from huihui.ai.
bc1qqnkhuchxw0zqjh2ku3lu4hq45hc6gy84uk70ge