|
--- |
|
license: bsd-3-clause |
|
tags: |
|
- protein |
|
- progen2 |
|
--- |
|
This is the one-directional model trained on 7 protein families: |
|
- PF00002 - GPCRs |
|
- PF00042 - Globins |
|
- PF00125 - Core histones |
|
- PF00127 - Copper binding proteins |
|
- PF00257 - Dehydrins |
|
- PF00262 - Calreticulins |
|
- PF03668 - P-loop ATPase |
|
|
|
Check out the [github repo](https://github.com/hugohrban/ProGen2-finetuning) for more information. |
|
|
|
Example usage: |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM |
|
from tokenizers import Tokenizer |
|
# optionally use local imports |
|
# from models.progen.modeling_progen import ProGenForCausalLM |
|
# from models.progen.configuration_progen import ProGenConfig |
|
import torch |
|
import torch.nn.functional as F |
|
|
|
# load model and tokenizer |
|
model = AutoModelForCausalLM.from_pretrained("hugohrban/progen2-small-mix7", trust_remote_code=True) |
|
tokenizer = Tokenizer.from_pretrained("hugohrban/progen2-small-mix7") |
|
tokenizer.no_padding() |
|
|
|
# prepare input |
|
prompt = "<|pf03668|>1MEVVIVTGMSGAGK" |
|
input_ids = torch.tensor(tokenizer.encode(prompt).ids).to(model.device) |
|
|
|
# forward pass |
|
logits = model(input_ids).logits |
|
|
|
# print output probabilities |
|
next_token_logits = logits[-1, :] |
|
next_token_probs = F.softmax(next_token_logits, dim=-1) |
|
for i in range(tokenizer.get_vocab_size(with_added_tokens=False)): |
|
print(f"{tokenizer.id_to_token(i)}: {100 * next_token_probs[i].item():.2f} %") |
|
``` |