custom-ner-model2

This model is a fine-tuned version of dccuchile/distilbert-base-spanish-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2050
  • Precision: 0.8542
  • Recall: 0.8817
  • F1: 0.8677
  • Accuracy: 0.9595

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 105 0.5185 0.5840 0.5484 0.5656 0.8596
No log 2.0 210 0.3212 0.7365 0.7312 0.7338 0.9050
No log 3.0 315 0.2440 0.8123 0.8065 0.8094 0.9389
No log 4.0 420 0.2186 0.8014 0.8100 0.8057 0.9431
0.4107 5.0 525 0.1911 0.8481 0.8602 0.8541 0.9516
0.4107 6.0 630 0.1931 0.8235 0.8530 0.8380 0.9546
0.4107 7.0 735 0.1720 0.8368 0.8638 0.8501 0.9570
0.4107 8.0 840 0.1858 0.8385 0.8746 0.8561 0.9583
0.4107 9.0 945 0.1858 0.85 0.8530 0.8515 0.9552
0.0667 10.0 1050 0.1961 0.8526 0.8710 0.8617 0.9564
0.0667 11.0 1155 0.1970 0.8537 0.8781 0.8657 0.9589
0.0667 12.0 1260 0.1865 0.8478 0.8781 0.8627 0.9619
0.0667 13.0 1365 0.1994 0.8379 0.8710 0.8541 0.9583
0.0667 14.0 1470 0.1913 0.8507 0.8781 0.8642 0.9613
0.0274 15.0 1575 0.2064 0.8512 0.8817 0.8662 0.9595
0.0274 16.0 1680 0.2053 0.8478 0.8781 0.8627 0.9601
0.0274 17.0 1785 0.2037 0.8576 0.8853 0.8713 0.9601
0.0274 18.0 1890 0.2056 0.8632 0.8817 0.8723 0.9595
0.0274 19.0 1995 0.2066 0.8571 0.8817 0.8693 0.9601
0.0162 20.0 2100 0.2050 0.8542 0.8817 0.8677 0.9595

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.13.1+cu116
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
119
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for hucruz/custom-ner-model-viajes

Finetuned
(23)
this model