|
from transformers import Pipeline
|
|
from .rpeaks2hrv import RPeak2HRV, FeatureDomain
|
|
|
|
class RPeak2HRVPipeline(Pipeline):
|
|
rpeak2HRVExtractor = RPeak2HRV()
|
|
|
|
def _sanitize_parameters(self, **kwargs):
|
|
preprocess_kwargs = {}
|
|
if "sampling_rate" in kwargs:
|
|
preprocess_kwargs["sampling_rate"] = kwargs["sampling_rate"]
|
|
if "windowing_method" in kwargs:
|
|
preprocess_kwargs["windowing_method"] = kwargs["windowing_method"]
|
|
if "time_header" in kwargs:
|
|
preprocess_kwargs["time_header"] = kwargs["time_header"]
|
|
if "rri_header" in kwargs:
|
|
preprocess_kwargs["rri_header"] = kwargs["rri_header"]
|
|
if "window_size" in kwargs:
|
|
preprocess_kwargs["window_size"] = kwargs["window_size"]
|
|
if "feature_domains" in kwargs:
|
|
preprocess_kwargs["feature_domains"] = kwargs["feature_domains"]
|
|
return preprocess_kwargs, {}, {}
|
|
|
|
def preprocess(self, inputs, windowing_method:str = None, time_header = "SystemTime", rri_header = "interbeat_interval", window_size = "60s", feature_domains = [FeatureDomain.TIME, FeatureDomain.FREQUENCY, FeatureDomain.NON_LINEAR], sampling_rate = 1000):
|
|
return self.rpeak2HRVExtractor.get_hrv_features(inputs, windowing_method=windowing_method, time_header=time_header, rri_header=rri_header, window_size=window_size, feature_domains=feature_domains, sampling_rate=sampling_rate)
|
|
|
|
def _forward(self, model_inputs):
|
|
|
|
|
|
return model_inputs
|
|
|
|
def postprocess(self, model_outputs):
|
|
return model_outputs |