File size: 1,761 Bytes
98293c2
800538f
98293c2
 
 
 
 
 
486f164
 
5344c8f
 
 
 
 
 
 
 
800538f
 
98293c2
 
800538f
 
98293c2
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
from transformers import Pipeline
from .rpeaks2hrv import RPeak2HRV, FeatureDomain

class RPeak2HRVPipeline(Pipeline):
    rpeak2HRVExtractor = RPeak2HRV()
    
    def _sanitize_parameters(self, **kwargs):
        preprocess_kwargs = {}
        if "sampling_rate" in kwargs:
            preprocess_kwargs["sampling_rate"] = kwargs["sampling_rate"]
        if "windowing_method" in kwargs:
            preprocess_kwargs["windowing_method"] = kwargs["windowing_method"]
        if "time_header" in kwargs:
            preprocess_kwargs["time_header"] = kwargs["time_header"]
        if "rri_header" in kwargs:
            preprocess_kwargs["rri_header"] = kwargs["rri_header"]
        if "window_size" in kwargs:
            preprocess_kwargs["window_size"] = kwargs["window_size"]
        if "feature_domains" in kwargs:
            preprocess_kwargs["feature_domains"] = kwargs["feature_domains"]
        return preprocess_kwargs, {}, {}

    def preprocess(self, inputs, windowing_method:str = None, time_header = "SystemTime", rri_header = "interbeat_interval", window_size = "60s", feature_domains = [FeatureDomain.TIME, FeatureDomain.FREQUENCY, FeatureDomain.NON_LINEAR], sampling_rate = 1000):
        return self.rpeak2HRVExtractor.get_hrv_features(inputs, windowing_method=windowing_method, time_header=time_header, rri_header=rri_header, window_size=window_size, feature_domains=feature_domains, sampling_rate=sampling_rate)

    def _forward(self, model_inputs):
        # currently empty as all preprocessing steps are performed by preprocess function
        # in future extendable to facilitate end-2-end ML pipelines
        return model_inputs

    def postprocess(self, model_outputs):
        return model_outputs