Configuration Parsing
Warning:
In UNKNOWN_FILENAME: "auto_map.AutoTokenizer" must be a string
flan-t5laa-large
This model is a fine-tuned version of hrezaei/flan-t5laa-large on the HuggingFaceFW/fineweb sample-350BT dataset. It achieves the following results on the evaluation set:
- Perplexity: 1.1522
- Loss: 0.1417
- Accuracy: 0.0025
- Lookahead Perplexity: 524.0285
- Lookahead Loss: 6.2615
- Base Perplexity: 1.1386
- Base Loss: 0.1298
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- training_steps: 524288
Training results
| Training Loss | Epoch | Step | Accuracy | Base Loss | Base Perplexity | Lookahead Loss | Lookahead Perplexity | Validation Loss | Perplexity |
|---|---|---|---|---|---|---|---|---|---|
| 0.3249 | 0.0095 | 5000 | 0.0025 | 0.1298 | 1.1386 | 9.1628 | 9536.0974 | 0.1473 | 1.1587 |
| 0.3149 | 0.0191 | 10000 | 0.0025 | 0.1298 | 1.1386 | 8.2987 | 4018.5587 | 0.1457 | 1.1568 |
| 0.3455 | 0.0286 | 15000 | 0.0025 | 0.1298 | 1.1386 | 7.8543 | 2576.7294 | 0.1448 | 1.1558 |
| 0.3164 | 0.0381 | 20000 | 0.0025 | 0.1298 | 1.1386 | 7.6043 | 2006.8105 | 0.1443 | 1.1552 |
| 0.3412 | 0.0477 | 25000 | 0.0025 | 0.1298 | 1.1386 | 7.4405 | 1703.6775 | 0.1440 | 1.1549 |
| 0.3334 | 0.0572 | 30000 | 0.0025 | 0.1298 | 1.1386 | 7.3224 | 1513.8265 | 0.1438 | 1.1546 |
| 0.3182 | 0.0668 | 35000 | 0.0025 | 0.1298 | 1.1386 | 7.2325 | 1383.6223 | 0.1436 | 1.1544 |
| 0.3193 | 0.0763 | 40000 | 0.0025 | 0.1298 | 1.1386 | 7.1599 | 1286.7995 | 0.1434 | 1.1542 |
| 0.3112 | 0.0858 | 45000 | 0.0025 | 0.1298 | 1.1386 | 7.1003 | 1212.3711 | 0.1433 | 1.1541 |
| 0.3084 | 0.0954 | 50000 | 0.0025 | 0.1298 | 1.1386 | 7.0527 | 1155.9677 | 0.1432 | 1.1540 |
| 0.3281 | 0.1049 | 55000 | 0.0025 | 0.1298 | 1.1386 | 7.0097 | 1107.3615 | 0.1431 | 1.1539 |
| 0.3096 | 0.1144 | 60000 | 0.0025 | 0.1298 | 1.1386 | 6.9716 | 1065.9302 | 0.1431 | 1.1538 |
| 0.3168 | 1.0048 | 65000 | 0.0025 | 0.1298 | 1.1386 | 6.9373 | 1029.9387 | 0.1430 | 1.1537 |
| 0.3158 | 1.0143 | 70000 | 0.0025 | 0.1298 | 1.1386 | 6.9058 | 998.0076 | 0.1429 | 1.1536 |
| 0.3149 | 1.0238 | 75000 | 0.0025 | 0.1298 | 1.1386 | 6.8755 | 968.2614 | 0.1429 | 1.1536 |
| 0.3185 | 1.0334 | 80000 | 0.0025 | 0.1298 | 1.1386 | 6.8495 | 943.4458 | 0.1428 | 1.1535 |
| 0.3247 | 1.0429 | 85000 | 0.0025 | 0.1298 | 1.1386 | 6.8251 | 920.7070 | 0.1428 | 1.1535 |
| 0.3166 | 1.0525 | 90000 | 0.0025 | 0.1298 | 1.1386 | 6.8033 | 900.7799 | 0.1427 | 1.1534 |
| 0.3171 | 1.0620 | 95000 | 0.0025 | 0.1298 | 1.1386 | 6.7802 | 880.2640 | 0.1427 | 1.1534 |
| 0.3247 | 1.0715 | 100000 | 0.0025 | 0.1298 | 1.1386 | 6.7589 | 861.6873 | 0.1426 | 1.1533 |
| 0.3199 | 1.0095 | 105000 | 0.0025 | 0.1298 | 1.1386 | 6.7393 | 844.9302 | 0.1426 | 1.1533 |
| 0.3116 | 1.0191 | 110000 | 0.0025 | 0.1298 | 1.1386 | 6.7202 | 828.9964 | 0.1426 | 1.1532 |
| 0.3431 | 1.0286 | 115000 | 0.0025 | 0.1298 | 1.1386 | 6.7028 | 814.7008 | 0.1425 | 1.1532 |
| 0.3145 | 1.0381 | 120000 | 0.0025 | 0.1298 | 1.1386 | 6.6864 | 801.3963 | 0.1425 | 1.1531 |
| 0.3396 | 1.0477 | 125000 | 0.0025 | 0.1298 | 1.1386 | 6.6714 | 789.4998 | 0.1425 | 1.1531 |
| 0.332 | 1.0572 | 130000 | 0.0025 | 0.1298 | 1.1386 | 6.6562 | 777.5850 | 0.1424 | 1.1531 |
| 0.3169 | 1.0668 | 135000 | 0.0025 | 0.1298 | 1.1386 | 6.6411 | 765.9321 | 0.1424 | 1.1530 |
| 0.3183 | 1.0763 | 140000 | 0.0025 | 0.1298 | 1.1386 | 6.6259 | 754.4168 | 0.1424 | 1.1530 |
| 0.3102 | 1.0858 | 145000 | 0.0025 | 0.1298 | 1.1386 | 6.6117 | 743.7487 | 0.1423 | 1.1530 |
| 0.3075 | 1.0954 | 150000 | 0.0025 | 0.1298 | 1.1386 | 6.6002 | 735.2481 | 0.1423 | 1.1530 |
| 0.3272 | 1.1049 | 155000 | 0.0025 | 0.1298 | 1.1386 | 6.5881 | 726.3988 | 0.1423 | 1.1529 |
| 0.3088 | 1.1144 | 160000 | 0.0025 | 0.1298 | 1.1386 | 6.5765 | 717.9999 | 0.1423 | 1.1529 |
| 0.316 | 2.0048 | 165000 | 0.0025 | 0.1298 | 1.1386 | 6.5648 | 709.6853 | 0.1423 | 1.1529 |
| 0.315 | 2.0143 | 170000 | 0.0025 | 0.1298 | 1.1386 | 6.5536 | 701.7924 | 0.1422 | 1.1528 |
| 0.3142 | 2.0238 | 175000 | 0.0025 | 0.1298 | 1.1386 | 6.5417 | 693.4763 | 0.1422 | 1.1528 |
| 0.3178 | 2.0334 | 180000 | 0.0025 | 0.1298 | 1.1386 | 6.5319 | 686.6713 | 0.1422 | 1.1528 |
| 0.324 | 2.0429 | 185000 | 0.0025 | 0.1298 | 1.1386 | 6.5221 | 680.0125 | 0.1422 | 1.1528 |
| 0.316 | 2.0525 | 190000 | 0.0025 | 0.1298 | 1.1386 | 6.5135 | 674.1869 | 0.1422 | 1.1528 |
| 0.3165 | 2.0620 | 195000 | 0.0025 | 0.1298 | 1.1386 | 6.5032 | 667.2772 | 0.1421 | 1.1527 |
| 0.3241 | 2.0715 | 200000 | 0.0025 | 0.1298 | 1.1386 | 6.4936 | 660.9243 | 0.1421 | 1.1527 |
| 0.3193 | 1.0095 | 205000 | 0.0025 | 0.1298 | 1.1386 | 6.4847 | 655.0490 | 0.1421 | 1.1527 |
| 0.3111 | 1.0191 | 210000 | 0.0025 | 0.1298 | 1.1386 | 6.4758 | 649.2363 | 0.1421 | 1.1527 |
| 0.3426 | 1.0286 | 215000 | 0.0025 | 0.1298 | 1.1386 | 6.4675 | 643.8971 | 0.1421 | 1.1527 |
| 0.314 | 1.0381 | 220000 | 0.0025 | 0.1298 | 1.1386 | 6.4598 | 638.9146 | 0.1420 | 1.1526 |
| 0.3391 | 1.0477 | 225000 | 0.0025 | 0.1298 | 1.1386 | 6.4527 | 634.4029 | 0.1420 | 1.1526 |
| 0.3315 | 1.0572 | 230000 | 0.0025 | 0.1298 | 1.1386 | 6.4453 | 629.7214 | 0.1420 | 1.1526 |
| 0.3165 | 1.0668 | 235000 | 0.0025 | 0.1298 | 1.1386 | 6.4377 | 624.9499 | 0.1420 | 1.1526 |
| 0.3179 | 1.0763 | 240000 | 0.0025 | 0.1298 | 1.1386 | 6.4298 | 620.0502 | 0.1420 | 1.1526 |
| 0.3098 | 1.0858 | 245000 | 0.0025 | 0.1298 | 1.1386 | 6.4223 | 615.4145 | 0.1420 | 1.1526 |
| 0.3071 | 1.0954 | 250000 | 0.0025 | 0.1298 | 1.1386 | 6.4166 | 611.9283 | 0.1420 | 1.1525 |
| 0.3269 | 1.1049 | 255000 | 0.0025 | 0.1298 | 1.1386 | 6.4104 | 608.1609 | 0.1420 | 1.1525 |
| 0.3085 | 1.1144 | 260000 | 0.0025 | 0.1298 | 1.1386 | 6.4045 | 604.5368 | 0.1419 | 1.1525 |
| 0.3156 | 2.0048 | 265000 | 0.0025 | 0.1298 | 1.1386 | 6.3983 | 600.8226 | 0.1419 | 1.1525 |
| 0.3147 | 2.0143 | 270000 | 0.0025 | 0.1298 | 1.1386 | 6.3924 | 597.3057 | 0.1419 | 1.1525 |
| 0.3139 | 2.0238 | 275000 | 0.0025 | 0.1298 | 1.1386 | 6.3859 | 593.4073 | 0.1419 | 1.1525 |
| 0.3175 | 2.0334 | 280000 | 0.0025 | 0.1298 | 1.1386 | 6.3807 | 590.3181 | 0.1419 | 1.1525 |
| 0.3237 | 2.0429 | 285000 | 0.0025 | 0.1298 | 1.1386 | 6.3755 | 587.2825 | 0.1419 | 1.1524 |
| 0.3157 | 2.0525 | 290000 | 0.0025 | 0.1298 | 1.1386 | 6.3711 | 584.7022 | 0.1419 | 1.1524 |
| 0.3162 | 2.0620 | 295000 | 0.0025 | 0.1298 | 1.1386 | 6.3654 | 581.4033 | 0.1419 | 1.1524 |
| 0.3238 | 2.0715 | 300000 | 0.0025 | 0.1298 | 1.1386 | 6.3603 | 578.4126 | 0.1419 | 1.1524 |
| 0.319 | 1.0095 | 305000 | 0.0025 | 0.1298 | 1.1386 | 6.3554 | 575.6083 | 0.1418 | 1.1524 |
| 0.3108 | 1.0191 | 310000 | 0.0025 | 0.1298 | 1.1386 | 6.3506 | 572.8332 | 0.1418 | 1.1524 |
| 0.3424 | 1.0286 | 315000 | 0.0025 | 0.1298 | 1.1386 | 6.3461 | 570.2490 | 0.1418 | 1.1524 |
| 0.3137 | 1.0381 | 320000 | 0.0025 | 0.1298 | 1.1386 | 6.3419 | 567.8765 | 0.1418 | 1.1524 |
| 0.3389 | 1.0477 | 325000 | 0.0025 | 0.1298 | 1.1386 | 6.3381 | 565.7363 | 0.1418 | 1.1524 |
| 0.3313 | 1.0572 | 330000 | 0.0025 | 0.1298 | 1.1386 | 6.3342 | 563.5154 | 0.1418 | 1.1524 |
| 0.3163 | 1.0668 | 335000 | 0.0025 | 0.1298 | 1.1386 | 6.3301 | 561.2170 | 0.1418 | 1.1523 |
| 0.3177 | 1.0763 | 340000 | 0.0025 | 0.1298 | 1.1386 | 6.3258 | 558.8315 | 0.1418 | 1.1523 |
| 0.3096 | 1.0858 | 345000 | 0.0025 | 0.1298 | 1.1386 | 6.3217 | 556.5380 | 0.1418 | 1.1523 |
| 0.3069 | 1.0954 | 350000 | 0.0025 | 0.1298 | 1.1386 | 6.3188 | 554.8901 | 0.1418 | 1.1523 |
| 0.3267 | 1.1049 | 355000 | 0.0025 | 0.1298 | 1.1386 | 6.3155 | 553.0973 | 0.1418 | 1.1523 |
| 0.3083 | 1.1144 | 360000 | 0.0025 | 0.1298 | 1.1386 | 6.3124 | 551.3773 | 0.1418 | 1.1523 |
| 0.3154 | 2.0048 | 365000 | 0.0025 | 0.1298 | 1.1386 | 6.3092 | 549.6034 | 0.1418 | 1.1523 |
| 0.3145 | 2.0143 | 370000 | 0.0025 | 0.1298 | 1.1386 | 6.3062 | 547.9500 | 0.1417 | 1.1523 |
| 0.3137 | 2.0238 | 375000 | 0.0025 | 0.1298 | 1.1386 | 6.3028 | 546.0782 | 0.1417 | 1.1523 |
| 0.3173 | 2.0334 | 380000 | 0.0025 | 0.1298 | 1.1386 | 6.3001 | 544.6261 | 0.1417 | 1.1523 |
| 0.3235 | 2.0429 | 385000 | 0.0025 | 0.1298 | 1.1386 | 6.2975 | 543.2184 | 0.1417 | 1.1523 |
| 0.3155 | 2.0525 | 390000 | 0.0025 | 0.1298 | 1.1386 | 6.2954 | 542.0614 | 0.1417 | 1.1523 |
| 0.3161 | 2.0620 | 395000 | 0.0025 | 0.1298 | 1.1386 | 6.2926 | 540.5324 | 0.1417 | 1.1523 |
| 0.3237 | 2.0715 | 400000 | 0.0025 | 0.1298 | 1.1386 | 6.2901 | 539.1868 | 0.1417 | 1.1523 |
| 0.3162 | 1.0095 | 405000 | 1.1522 | 0.1417 | 0.0025 | 537.9444 | 6.2878 | 1.1386 | 0.1298 |
| 0.31 | 1.0191 | 410000 | 1.1522 | 0.1417 | 0.0025 | 536.6766 | 6.2854 | 1.1386 | 0.1298 |
| 0.3412 | 1.0286 | 415000 | 1.1522 | 0.1417 | 0.0025 | 535.5226 | 6.2832 | 1.1386 | 0.1298 |
| 0.3148 | 1.0381 | 420000 | 1.1522 | 0.1417 | 0.0025 | 534.5032 | 6.2813 | 1.1386 | 0.1298 |
| 0.3387 | 1.0477 | 425000 | 1.1522 | 0.1417 | 0.0025 | 533.6123 | 6.2797 | 1.1386 | 0.1298 |
| 0.3316 | 1.0572 | 430000 | 1.1522 | 0.1417 | 0.0025 | 532.7114 | 6.2780 | 1.1386 | 0.1298 |
| 0.3168 | 1.0668 | 435000 | 1.1522 | 0.1417 | 0.0025 | 531.7269 | 6.2761 | 1.1386 | 0.1298 |
| 0.3173 | 1.0763 | 440000 | 1.1522 | 0.1417 | 0.0025 | 530.8253 | 6.2744 | 1.1386 | 0.1298 |
| 0.3098 | 1.0858 | 445000 | 1.1522 | 0.1417 | 0.0025 | 529.8949 | 6.2727 | 1.1386 | 0.1298 |
| 0.3078 | 1.0954 | 450000 | 1.1522 | 0.1417 | 0.0025 | 529.2726 | 6.2715 | 1.1386 | 0.1298 |
| 0.3275 | 1.1049 | 455000 | 1.1522 | 0.1417 | 0.0025 | 528.6246 | 6.2703 | 1.1386 | 0.1298 |
| 0.308 | 1.1144 | 460000 | 1.1522 | 0.1417 | 0.0025 | 528.0456 | 6.2692 | 1.1386 | 0.1298 |
| 0.3159 | 2.0048 | 465000 | 1.1522 | 0.1417 | 0.0025 | 527.4365 | 6.2680 | 1.1386 | 0.1298 |
| 0.3115 | 2.0143 | 470000 | 1.1522 | 0.1417 | 0.0025 | 526.8853 | 6.2670 | 1.1386 | 0.1298 |
| 0.3137 | 2.0238 | 475000 | 1.1522 | 0.1417 | 0.0025 | 526.2984 | 6.2659 | 1.1386 | 0.1298 |
| 0.3146 | 2.0334 | 480000 | 1.1522 | 0.1417 | 0.0025 | 525.8735 | 6.2651 | 1.1386 | 0.1298 |
| 0.323 | 2.0429 | 485000 | 1.1522 | 0.1417 | 0.0025 | 525.4838 | 6.2643 | 1.1386 | 0.1298 |
| 0.3177 | 2.0525 | 490000 | 1.1522 | 0.1417 | 0.0025 | 525.1886 | 6.2638 | 1.1386 | 0.1298 |
| 0.3147 | 2.0620 | 495000 | 1.1522 | 0.1417 | 0.0025 | 524.8575 | 6.2631 | 1.1386 | 0.1298 |
| 0.3257 | 2.0715 | 500000 | 1.1522 | 0.1417 | 0.0025 | 524.6004 | 6.2626 | 1.1386 | 0.1298 |
| 0.3387 | 2.0811 | 505000 | 1.1522 | 0.1417 | 0.0025 | 524.3688 | 6.2622 | 1.1386 | 0.1298 |
| 0.3118 | 2.0906 | 510000 | 1.1522 | 0.1417 | 0.0025 | 524.1995 | 6.2619 | 1.1386 | 0.1298 |
| 0.3147 | 2.1001 | 515000 | 1.1522 | 0.1417 | 0.0025 | 524.1102 | 6.2617 | 1.1386 | 0.1298 |
| 0.3287 | 2.1097 | 520000 | 1.1522 | 0.1417 | 0.0025 | 524.0447 | 6.2616 | 1.1386 | 0.1298 |
Framework versions
- Transformers 4.57.0.dev0
- Pytorch 2.8.0+cu128
- Datasets 4.2.0
- Tokenizers 0.22.1
- Downloads last month
- 173
Model tree for hrezaei/flan-t5laa-large
Unable to build the model tree, the base model loops to the model itself. Learn more.
Dataset used to train hrezaei/flan-t5laa-large
Evaluation results
- Accuracy on HuggingFaceFW/fineweb sample-350BTself-reported0.003