hotchpotch/japanese-reranker-cross-encoder-xsmall-v1

日本語で学習させた Reranker (CrossEncoder) シリーズです。

Reranker についてや、技術レポート・評価等は以下を参考ください。

使い方

SentenceTransformers

from sentence_transformers import CrossEncoder
import torch

MODEL_NAME = "hotchpotch/japanese-reranker-cross-encoder-xsmall-v1"
device = "cuda" if torch.cuda.is_available() else "cpu"
model = CrossEncoder(MODEL_NAME, max_length=512, device=device)
if device == "cuda":
    model.model.half()
query = "感動的な映画について"
passages = [
    "深いテーマを持ちながらも、観る人の心を揺さぶる名作。登場人物の心情描写が秀逸で、ラストは涙なしでは見られない。",
    "重要なメッセージ性は評価できるが、暗い話が続くので気分が落ち込んでしまった。もう少し明るい要素があればよかった。",
    "どうにもリアリティに欠ける展開が気になった。もっと深みのある人間ドラマが見たかった。",
    "アクションシーンが楽しすぎる。見ていて飽きない。ストーリーはシンプルだが、それが逆に良い。",
]
scores = model.predict([(query, passage) for passage in passages])

HuggingFace transformers

from transformers import AutoTokenizer, AutoModelForSequenceClassification
from torch.nn import Sigmoid

MODEL_NAME = "hotchpotch/japanese-reranker-cross-encoder-xsmall-v1"
device = "cuda" if torch.cuda.is_available() else "cpu"

tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME)
model.to(device)
model.eval()

if device == "cuda":
    model.half()

query = "感動的な映画について"
passages = [
    "深いテーマを持ちながらも、観る人の心を揺さぶる名作。登場人物の心情描写が秀逸で、ラストは涙なしでは見られない。",
    "重要なメッセージ性は評価できるが、暗い話が続くので気分が落ち込んでしまった。もう少し明るい要素があればよかった。",
    "どうにもリアリティに欠ける展開が気になった。もっと深みのある人間ドラマが見たかった。",
    "アクションシーンが楽しすぎる。見ていて飽きない。ストーリーはシンプルだが、それが逆に良い。",
]
inputs = tokenizer(
    [(query, passage) for passage in passages],
    padding=True,
    truncation=True,
    max_length=512,
    return_tensors="pt",
)
inputs = {k: v.to(device) for k, v in inputs.items()}
logits = model(**inputs).logits
activation = Sigmoid()
scores = activation(logits).squeeze().tolist()

評価結果

Model Name JQaRA JaCWIR MIRACL JSQuAD
japanese-reranker-cross-encoder-xsmall-v1 0.6136 0.9376 0.7411 0.9602
japanese-reranker-cross-encoder-small-v1 0.6247 0.939 0.7776 0.9604
japanese-reranker-cross-encoder-base-v1 0.6711 0.9337 0.818 0.9708
japanese-reranker-cross-encoder-large-v1 0.7099 0.9364 0.8406 0.9773
japanese-bge-reranker-v2-m3-v1 0.6918 0.9372 0.8423 0.9624
bge-reranker-v2-m3 0.673 0.9343 0.8374 0.9599
bge-reranker-large 0.4718 0.7332 0.7666 0.7081
bge-reranker-base 0.2445 0.4905 0.6792 0.5757
cross-encoder-mmarco-mMiniLMv2-L12-H384-v1 0.5588 0.9211 0.7158 0.932
shioriha-large-reranker 0.5775 0.8458 0.8084 0.9262
bge-m3+all 0.576 0.904 0.7926 0.9226
bge-m3+dense 0.539 0.8642 0.7753 0.8815
bge-m3+colbert 0.5656 0.9064 0.7902 0.9297
bge-m3+sparse 0.5088 0.8944 0.6941 0.9184
JaColBERTv2 0.5847 0.9185 0.6861 0.9247
multilingual-e5-large 0.554 0.8759 0.7722 0.8892
multilingual-e5-small 0.4917 0.869 0.7025 0.8565
bm25 0.458 0.8408 0.4387 0.9002

ライセンス

MIT License

Downloads last month
4,909
Safetensors
Model size
107M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Datasets used to train hotchpotch/japanese-reranker-cross-encoder-xsmall-v1

Collection including hotchpotch/japanese-reranker-cross-encoder-xsmall-v1