Edit model card

bge-m3-onnx-o4

This is bge-m3-onnx-o4 weights of the original BAAI/bge-m3. Why is this model cool?

  • Multi-Functionality: It can simultaneously perform the three common retrieval functionalities of embedding model: dense retrieval, multi-vector retrieval, and sparse retrieval.
  • Multi-Linguality: It can support more than 100 working languages.
  • Multi-Granularity: It is able to process inputs of different granularities, spanning from short sentences to long documents of up to 8192 tokens.

Usage

IMPORTANT - DOWNLOAD MODEL WEIGHTS

Please see the instructions below.

  1. Download the checkpoint: For some reason you cannot directly load from this online version (you will get an exception). Please download this repo as below:
# pip install huggingface-hub
 
from huggingface_hub import snapshot_download

snapshot_download(repo_id="hooman650/bge-m3-onnx-o4",local_dir="bge-m3-onnx")

Dense Retrieval

# for cuda 
pip install --upgrade-strategy eager optimum[onnxruntime]

from optimum.onnxruntime import ORTModelForFeatureExtraction
from transformers import AutoTokenizer
import torch

# Make sure that you download the model weights locally to `bge-m3-onnx`
model = ORTModelForFeatureExtraction.from_pretrained("bge-m3-onnx", provider="CUDAExecutionProvider") # omit provider for CPU usage.
tokenizer = AutoTokenizer.from_pretrained("hooman650/bge-m3-onnx-o4")

sentences = [
    "English: The quick brown fox jumps over the lazy dog.",
    "Spanish: El rápido zorro marrón salta sobre el perro perezoso.",
    "French: Le renard brun rapide saute par-dessus le chien paresseux.",
    "German: Der schnelle braune Fuchs springt über den faulen Hund.",
    "Italian: La volpe marrone veloce salta sopra il cane pigro.",
    "Japanese: 速い茶色の狐が怠惰な犬を飛び越える。",
    "Chinese (Simplified): 快速的棕色狐狸跳过懒狗。",
    "Russian: Быстрая коричневая лиса прыгает через ленивую собаку.",
    "Arabic: الثعلب البني السريع يقفز فوق الكلب الكسول.",
    "Hindi: तेज़ भूरी लोमड़ी आलसी कुत्ते के ऊपर कूद जाती है।"
]

encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt').to("cuda")

# Get the embeddings
out=model(**encoded_input,return_dict=True).last_hidden_state

# normalize the embeddings
dense_vecs = torch.nn.functional.normalize(out[:, 0], dim=-1)

Multi-Vector (ColBERT)

coming soon...

Downloads last month
1,503
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.