BitVLA: 1-bit Vision-Language-Action Models for Robotics Manipulation
Open Source Plan
- ✅ Paper, Pre-trained VLM and evaluation code.
- ✅ Fine-tuned VLA code and models
- 🧠Pre-training code and VLA.
Contents
Checkpoints
Model | Path |
---|---|
BitVLA | hongyuw/bitvla-bitsiglipL-224px-bf16 |
BitVLA finetuned on LIBERO-Spatial | hongyuw/ft-bitvla-bitsiglipL-224px-libero_spatial-bf16 |
BitVLA finetuned on LIBERO-Object | hongyuw/ft-bitvla-bitsiglipL-224px-libero_object-bf16 |
BitVLA finetuned on LIBERO-Goal | hongyuw/ft-bitvla-bitsiglipL-224px-libero_long-bf16 |
BitVLA finetuned on LIBERO-Long | hongyuw/ft-bitvla-bitsiglipL-224px-libero_long-bf16 |
BitVLA w/ BF16 SigLIP | hongyuw/bitvla-siglipL-224px-bf16 |
Note that we provide the master weights of BitVLA and perform online quantization. For actual memory savings, you may quantize the weights offline to 1.58-bit precision. We recommend using the bitnet.cpp inference framework to accurately measure the reduction in inference cost.
Due to limited resources, we have not yet pre-trained BitVLA on a large-scale robotics dataset. We are actively working to secure additional compute resources to conduct this pre-training.
Vision-Language
Evaluation on VQA
We use the LMM-Eval toolkit to conduct evaluations on VQA tasks. We provide the transformers repo in which we modify the modeling_llava.py and modeling_siglip.py to support the W1.58-A8 quantization.
The evaluation should use nvidia_24_07 docker. Install the packages:
docker run --name nvidia_24_07 --privileged --net=host --ipc=host --gpus=all -v /mnt:/mnt -v /tmp:/tmp -d nvcr.io/nvidia/pytorch:24.07-py3 sleep infinity # only use for multimodal evaluation
docker exec -it nvidia_24_07 bash
git clone https://github.com/ustcwhy/BitVLA.git
cd BitVLA/
bash vl_eval_setup.sh # only use for multimodal evaluation
First, download the BitVLA model from HuggingFace:
git clone https://huggingface.co/hongyuw/bitvla-bitsiglipL-224px-bf16 # BitVLA w/ W1.58-A8 SigLIP-L
git clone https://huggingface.co/hongyuw/bitvla-siglipL-224px-bf16 # BitVLA w/ BF16 SigLIP-L
Then run the following scripts to conduct evaluations:
cd lmms-eval/
bash eval-dense-hf.sh /YOUR_PATH_TO_EXP/bitvla-bitsiglipL-224px-bf16
bash eval-dense-hf.sh /YOUR_PATH_TO_EXP/bitvla-siglipL-224px-bf16
Note that we provide the master weights of BitVLA and perform online quantization. For actual memory savings, you may quantize the weights offline to 1.58-bit precision. We recommend using the bitnet.cpp inference framework to accurately measure the reduction in inference cost.
Vision-Language-Action
OFT Training
1. Preparing OFT
We fine-tune BitVLA using OFT training shown in OpenVLA-OFT. First setup the environment as required by that project. You can refer to SETUP.md and LIBERO.md for detailed instructions.
conda create -n bitvla python=3.10 -y
conda activate bitvla
pip install torch==2.5.0 torchvision==0.20.0 torchaudio==2.5.0 --index-url https://download.pytorch.org/whl/cu124
# or use the provided docker
# docker run --name nvidia_24_07 --privileged --net=host --ipc=host --gpus=all -v /mnt:/mnt -v /tmp:/tmp -d nvcr.io/nvidia/pytorch:24.07-py3 sleep infinity
cd BitVLA
pip install -e openvla-oft/
pip install -e transformers
cd openvla-oft/
# install LIBERO
git clone https://github.com/Lifelong-Robot-Learning/LIBERO.git
pip install -e LIBERO/
# in BitVLA
pip install -r experiments/robot/libero/libero_requirements.txt
# install bitvla
pip install -e bitvla/
We adopt the same dataset as OpenVLA-OFT for the fine-tuning on LIBERO. You can download the dataset from HuggingFace.
git clone [email protected]:datasets/openvla/modified_libero_rlds
2. OFT fine-tuning
First convert the BitVLA to a format compatible with the VLA codebase.
python convert_ckpt.py /path/to/bitvla-bitsiglipL-224px-bf16
After that, you can finetune the BitVLA using the following command. Here we take LIBERO spatial as an example:
torchrun --standalone --nnodes 1 --nproc-per-node 4 vla-scripts/finetune_bitnet.py \
--vla_path /path/to/bitvla-bitsiglipL-224px-bf16 \
--data_root_dir /path/to/modified_libero_rlds/ \
--dataset_name libero_spatial_no_noops \
--run_root_dir /path/to/save/your/ckpt \
--use_l1_regression True \
--warmup_steps 375 \
--use_lora False \
--num_images_in_input 2 \
--use_proprio True \
--batch_size 2 \
--grad_accumulation_steps 8 \
--learning_rate 1e-4 \
--max_steps 10001 \
--save_freq 10000 \
--save_latest_checkpoint_only False \
--image_aug True \
--run_id_note your_id
Evaluation on LIBERO
You can download our fine-tuned BitVLA models from HuggingFace. As an example for spatial set in LIBERO, run the following script for evaluation:
python experiments/robot/libero/run_libero_eval_bitnet.py \
--pretrained_checkpoint /path/to/ft-bitvla-bitsiglipL-224px-libero_spatial-bf16 \
--task_suite_name libero_spatial \
--info_in_path "information you want to show in path" \
--model_family "bitnet"
Acknowledgement
This repository is built using LMM-Eval, the HuggingFace's transformers and OpenVLA-OFT.
Citation
If you find this repository useful, please consider citing our work:
@article{bitvla,
title={BitVLA: 1-bit Vision-Language-Action Models for Robotics Manipulation},
author={Hongyu Wang and Chuyan Xiong and Ruiping Wang and Xilin Chen},
year={2025},
eprint={2506.07530},
archivePrefix={arXiv},
primaryClass={cs.RO},
}
License
This project is licensed under the MIT License.
Contact Information
For help or issues using models, please submit a GitHub issue.
- Downloads last month
- 14