hkivancoral's picture
End of training
6a137c7
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_40x_deit_tiny_sgd_0001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6744186046511628

hushem_40x_deit_tiny_sgd_0001_fold3

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9959
  • Accuracy: 0.6744

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.4187 1.0 217 1.4585 0.3023
1.3875 2.0 434 1.4331 0.2791
1.3134 3.0 651 1.4120 0.3256
1.3061 4.0 868 1.3930 0.3488
1.3015 5.0 1085 1.3762 0.3721
1.2507 6.0 1302 1.3597 0.3721
1.2542 7.0 1519 1.3427 0.3721
1.2153 8.0 1736 1.3276 0.3721
1.2187 9.0 1953 1.3127 0.4186
1.1894 10.0 2170 1.2981 0.4186
1.1545 11.0 2387 1.2843 0.4186
1.1296 12.0 2604 1.2697 0.4419
1.1425 13.0 2821 1.2546 0.4651
1.1006 14.0 3038 1.2420 0.4884
1.101 15.0 3255 1.2295 0.4884
1.0751 16.0 3472 1.2159 0.4884
1.0907 17.0 3689 1.2031 0.4884
1.047 18.0 3906 1.1903 0.5116
1.0396 19.0 4123 1.1781 0.5581
1.0151 20.0 4340 1.1663 0.5581
1.0071 21.0 4557 1.1547 0.5581
0.9605 22.0 4774 1.1441 0.5814
0.9825 23.0 4991 1.1328 0.6047
0.9877 24.0 5208 1.1238 0.6047
0.944 25.0 5425 1.1139 0.6047
1.0028 26.0 5642 1.1046 0.6047
0.9583 27.0 5859 1.0948 0.6279
0.9319 28.0 6076 1.0861 0.6279
0.8861 29.0 6293 1.0779 0.6279
0.9631 30.0 6510 1.0704 0.6512
0.8801 31.0 6727 1.0625 0.6512
0.9404 32.0 6944 1.0548 0.6512
0.9252 33.0 7161 1.0485 0.6512
0.8258 34.0 7378 1.0422 0.6512
0.8739 35.0 7595 1.0361 0.6744
0.8975 36.0 7812 1.0306 0.6744
0.8371 37.0 8029 1.0260 0.6744
0.8695 38.0 8246 1.0212 0.6744
0.8346 39.0 8463 1.0171 0.6744
0.8685 40.0 8680 1.0135 0.6744
0.8448 41.0 8897 1.0098 0.6744
0.8514 42.0 9114 1.0067 0.6744
0.8326 43.0 9331 1.0041 0.6744
0.8323 44.0 9548 1.0018 0.6744
0.8178 45.0 9765 0.9998 0.6744
0.8479 46.0 9982 0.9982 0.6744
0.8512 47.0 10199 0.9971 0.6744
0.851 48.0 10416 0.9963 0.6744
0.839 49.0 10633 0.9959 0.6744
0.7968 50.0 10850 0.9959 0.6744

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2