metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_40x_deit_small_rms_0001_fold1
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.7555555555555555
hushem_40x_deit_small_rms_0001_fold1
This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 3.2959
- Accuracy: 0.7556
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.1164 | 1.0 | 215 | 0.6806 | 0.8444 |
0.1473 | 2.0 | 430 | 1.6512 | 0.6889 |
0.0323 | 3.0 | 645 | 2.5012 | 0.5556 |
0.0026 | 4.0 | 860 | 1.3440 | 0.7333 |
0.0644 | 5.0 | 1075 | 1.9037 | 0.6667 |
0.0218 | 6.0 | 1290 | 1.1429 | 0.7778 |
0.0001 | 7.0 | 1505 | 1.3004 | 0.7778 |
0.0 | 8.0 | 1720 | 1.5783 | 0.8 |
0.0 | 9.0 | 1935 | 1.6151 | 0.8 |
0.0 | 10.0 | 2150 | 1.7171 | 0.7778 |
0.0 | 11.0 | 2365 | 1.8524 | 0.7778 |
0.0 | 12.0 | 2580 | 2.0103 | 0.7778 |
0.0 | 13.0 | 2795 | 2.1601 | 0.7778 |
0.0 | 14.0 | 3010 | 2.3193 | 0.7778 |
0.0 | 15.0 | 3225 | 2.4911 | 0.7556 |
0.0 | 16.0 | 3440 | 2.6216 | 0.7556 |
0.0 | 17.0 | 3655 | 2.7129 | 0.7556 |
0.0 | 18.0 | 3870 | 2.8038 | 0.7556 |
0.0 | 19.0 | 4085 | 2.8933 | 0.7556 |
0.0 | 20.0 | 4300 | 2.9673 | 0.7556 |
0.0 | 21.0 | 4515 | 3.0230 | 0.7556 |
0.0 | 22.0 | 4730 | 3.0642 | 0.7556 |
0.0 | 23.0 | 4945 | 3.0970 | 0.7556 |
0.0 | 24.0 | 5160 | 3.1238 | 0.7556 |
0.0 | 25.0 | 5375 | 3.1458 | 0.7556 |
0.0 | 26.0 | 5590 | 3.1648 | 0.7556 |
0.0 | 27.0 | 5805 | 3.1810 | 0.7556 |
0.0 | 28.0 | 6020 | 3.1953 | 0.7556 |
0.0 | 29.0 | 6235 | 3.2081 | 0.7556 |
0.0 | 30.0 | 6450 | 3.2189 | 0.7556 |
0.0 | 31.0 | 6665 | 3.2288 | 0.7556 |
0.0 | 32.0 | 6880 | 3.2374 | 0.7556 |
0.0 | 33.0 | 7095 | 3.2451 | 0.7556 |
0.0 | 34.0 | 7310 | 3.2520 | 0.7556 |
0.0 | 35.0 | 7525 | 3.2584 | 0.7556 |
0.0 | 36.0 | 7740 | 3.2638 | 0.7556 |
0.0 | 37.0 | 7955 | 3.2687 | 0.7556 |
0.0 | 38.0 | 8170 | 3.2732 | 0.7556 |
0.0 | 39.0 | 8385 | 3.2771 | 0.7556 |
0.0 | 40.0 | 8600 | 3.2806 | 0.7556 |
0.0 | 41.0 | 8815 | 3.2837 | 0.7556 |
0.0 | 42.0 | 9030 | 3.2863 | 0.7556 |
0.0 | 43.0 | 9245 | 3.2887 | 0.7556 |
0.0 | 44.0 | 9460 | 3.2906 | 0.7556 |
0.0 | 45.0 | 9675 | 3.2923 | 0.7556 |
0.0 | 46.0 | 9890 | 3.2937 | 0.7556 |
0.0 | 47.0 | 10105 | 3.2947 | 0.7556 |
0.0 | 48.0 | 10320 | 3.2954 | 0.7556 |
0.0 | 49.0 | 10535 | 3.2958 | 0.7556 |
0.0 | 50.0 | 10750 | 3.2959 | 0.7556 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.1.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2