hkivancoral's picture
End of training
34252a0
metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_40x_deit_base_sgd_001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8048780487804879

hushem_40x_deit_base_sgd_001_fold5

This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5235
  • Accuracy: 0.8049

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.2691 1.0 220 1.3176 0.3415
1.1324 2.0 440 1.2295 0.4634
1.003 3.0 660 1.1173 0.6341
0.8718 4.0 880 0.9888 0.6585
0.7662 5.0 1100 0.8700 0.6829
0.6305 6.0 1320 0.7780 0.6585
0.552 7.0 1540 0.7068 0.6829
0.4791 8.0 1760 0.6670 0.6829
0.413 9.0 1980 0.6302 0.6829
0.3827 10.0 2200 0.6050 0.7073
0.3215 11.0 2420 0.5880 0.7073
0.2953 12.0 2640 0.5689 0.7073
0.2691 13.0 2860 0.5551 0.7073
0.255 14.0 3080 0.5391 0.7317
0.2205 15.0 3300 0.5338 0.7561
0.2031 16.0 3520 0.5276 0.8049
0.1827 17.0 3740 0.5158 0.8049
0.178 18.0 3960 0.5117 0.8049
0.1722 19.0 4180 0.5070 0.8293
0.1354 20.0 4400 0.5054 0.8293
0.1154 21.0 4620 0.5008 0.8293
0.1032 22.0 4840 0.5031 0.8293
0.123 23.0 5060 0.5052 0.8293
0.0925 24.0 5280 0.5012 0.8049
0.1004 25.0 5500 0.5002 0.8293
0.1106 26.0 5720 0.5000 0.8293
0.0932 27.0 5940 0.5018 0.8293
0.0974 28.0 6160 0.5069 0.8293
0.0749 29.0 6380 0.5067 0.8293
0.0626 30.0 6600 0.5071 0.8293
0.058 31.0 6820 0.5023 0.8293
0.0771 32.0 7040 0.5068 0.8293
0.0537 33.0 7260 0.5089 0.8049
0.0443 34.0 7480 0.5110 0.8049
0.0529 35.0 7700 0.5102 0.8049
0.056 36.0 7920 0.5123 0.8293
0.0373 37.0 8140 0.5147 0.8293
0.0662 38.0 8360 0.5122 0.8293
0.0489 39.0 8580 0.5155 0.8293
0.0389 40.0 8800 0.5166 0.8293
0.0414 41.0 9020 0.5205 0.8049
0.0455 42.0 9240 0.5225 0.8293
0.0397 43.0 9460 0.5226 0.8049
0.0345 44.0 9680 0.5228 0.8049
0.0281 45.0 9900 0.5217 0.8049
0.0392 46.0 10120 0.5231 0.8049
0.0436 47.0 10340 0.5235 0.8293
0.0347 48.0 10560 0.5238 0.8049
0.0331 49.0 10780 0.5237 0.8049
0.0457 50.0 11000 0.5235 0.8049

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2