metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_40x_deit_base_sgd_001_fold3
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.7674418604651163
hushem_40x_deit_base_sgd_001_fold3
This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.4834
- Accuracy: 0.7674
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.2567 | 1.0 | 217 | 1.3908 | 0.3023 |
1.1156 | 2.0 | 434 | 1.3183 | 0.4186 |
0.9891 | 3.0 | 651 | 1.2352 | 0.5116 |
0.902 | 4.0 | 868 | 1.1401 | 0.5814 |
0.7383 | 5.0 | 1085 | 1.0533 | 0.6047 |
0.6659 | 6.0 | 1302 | 0.9783 | 0.6279 |
0.577 | 7.0 | 1519 | 0.9088 | 0.6047 |
0.5084 | 8.0 | 1736 | 0.8504 | 0.6512 |
0.4618 | 9.0 | 1953 | 0.8112 | 0.6512 |
0.3986 | 10.0 | 2170 | 0.7644 | 0.6744 |
0.3262 | 11.0 | 2387 | 0.7405 | 0.6744 |
0.3187 | 12.0 | 2604 | 0.7073 | 0.7442 |
0.287 | 13.0 | 2821 | 0.6756 | 0.7442 |
0.2667 | 14.0 | 3038 | 0.6524 | 0.7674 |
0.2566 | 15.0 | 3255 | 0.6373 | 0.7674 |
0.2206 | 16.0 | 3472 | 0.6121 | 0.7674 |
0.1851 | 17.0 | 3689 | 0.6018 | 0.7674 |
0.1802 | 18.0 | 3906 | 0.5901 | 0.7674 |
0.1691 | 19.0 | 4123 | 0.5735 | 0.7674 |
0.1555 | 20.0 | 4340 | 0.5642 | 0.7674 |
0.1532 | 21.0 | 4557 | 0.5647 | 0.7907 |
0.1287 | 22.0 | 4774 | 0.5473 | 0.7907 |
0.1172 | 23.0 | 4991 | 0.5337 | 0.7907 |
0.1215 | 24.0 | 5208 | 0.5344 | 0.7907 |
0.1 | 25.0 | 5425 | 0.5177 | 0.7907 |
0.1218 | 26.0 | 5642 | 0.5181 | 0.7907 |
0.0935 | 27.0 | 5859 | 0.5065 | 0.7907 |
0.0833 | 28.0 | 6076 | 0.4985 | 0.7907 |
0.0714 | 29.0 | 6293 | 0.4998 | 0.7907 |
0.0825 | 30.0 | 6510 | 0.4944 | 0.7907 |
0.0754 | 31.0 | 6727 | 0.4956 | 0.7674 |
0.0765 | 32.0 | 6944 | 0.4881 | 0.7674 |
0.0774 | 33.0 | 7161 | 0.4958 | 0.7674 |
0.057 | 34.0 | 7378 | 0.4894 | 0.7674 |
0.0663 | 35.0 | 7595 | 0.4882 | 0.7674 |
0.059 | 36.0 | 7812 | 0.4848 | 0.7674 |
0.0537 | 37.0 | 8029 | 0.4865 | 0.7674 |
0.0454 | 38.0 | 8246 | 0.4882 | 0.7674 |
0.0514 | 39.0 | 8463 | 0.4854 | 0.7674 |
0.0629 | 40.0 | 8680 | 0.4861 | 0.7674 |
0.0453 | 41.0 | 8897 | 0.4865 | 0.7674 |
0.0447 | 42.0 | 9114 | 0.4837 | 0.7674 |
0.0452 | 43.0 | 9331 | 0.4805 | 0.7907 |
0.0545 | 44.0 | 9548 | 0.4818 | 0.7907 |
0.0444 | 45.0 | 9765 | 0.4816 | 0.7907 |
0.0454 | 46.0 | 9982 | 0.4835 | 0.7674 |
0.0369 | 47.0 | 10199 | 0.4841 | 0.7674 |
0.0401 | 48.0 | 10416 | 0.4827 | 0.7907 |
0.0524 | 49.0 | 10633 | 0.4835 | 0.7674 |
0.0394 | 50.0 | 10850 | 0.4834 | 0.7674 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.1.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2