hkivancoral's picture
End of training
843f8f9
metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_40x_deit_base_rms_001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7560975609756098

hushem_40x_deit_base_rms_001_fold5

This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 3.5781
  • Accuracy: 0.7561

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.2271 1.0 220 1.5032 0.3902
0.9545 2.0 440 1.5087 0.3902
0.8667 3.0 660 1.0714 0.4878
0.8154 4.0 880 0.7851 0.6098
0.6309 5.0 1100 1.0215 0.4878
0.5655 6.0 1320 0.8556 0.6098
0.4033 7.0 1540 0.7849 0.7073
0.3567 8.0 1760 1.1431 0.6585
0.3869 9.0 1980 0.7273 0.7561
0.2867 10.0 2200 0.9025 0.6341
0.2933 11.0 2420 1.0767 0.6829
0.2822 12.0 2640 0.9054 0.7561
0.2576 13.0 2860 1.1701 0.7073
0.1424 14.0 3080 1.2265 0.7317
0.1597 15.0 3300 1.2021 0.7317
0.0822 16.0 3520 1.5652 0.7073
0.0859 17.0 3740 1.0512 0.7561
0.1048 18.0 3960 1.9377 0.6341
0.0506 19.0 4180 1.4302 0.7561
0.0595 20.0 4400 1.2065 0.7073
0.1492 21.0 4620 1.7891 0.7073
0.0835 22.0 4840 1.5550 0.7561
0.0475 23.0 5060 1.2142 0.7317
0.0941 24.0 5280 1.4080 0.7073
0.0186 25.0 5500 1.5889 0.7561
0.0776 26.0 5720 1.8453 0.6829
0.0752 27.0 5940 1.5817 0.7805
0.0113 28.0 6160 1.6776 0.7805
0.0011 29.0 6380 2.1296 0.7317
0.0107 30.0 6600 1.9807 0.7073
0.0181 31.0 6820 1.9248 0.7073
0.0106 32.0 7040 2.5784 0.7317
0.0002 33.0 7260 1.8180 0.8049
0.0013 34.0 7480 1.5976 0.8049
0.0031 35.0 7700 1.9747 0.7317
0.0094 36.0 7920 2.4830 0.7317
0.0006 37.0 8140 2.9074 0.7561
0.0049 38.0 8360 2.6503 0.6829
0.0002 39.0 8580 2.4189 0.7561
0.0 40.0 8800 2.4124 0.7561
0.0 41.0 9020 2.5470 0.7561
0.0 42.0 9240 2.6196 0.7805
0.0 43.0 9460 2.7251 0.7805
0.0 44.0 9680 2.9457 0.7805
0.0 45.0 9900 3.1311 0.7805
0.0 46.0 10120 3.2547 0.7805
0.0 47.0 10340 3.3567 0.7317
0.0 48.0 10560 3.5689 0.7561
0.0 49.0 10780 3.5825 0.7561
0.0 50.0 11000 3.5781 0.7561

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2