hkivancoral's picture
End of training
9760d88
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_small_adamax_00001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6666666666666666

hushem_1x_deit_small_adamax_00001_fold4

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7508
  • Accuracy: 0.6667

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.3350 0.3571
1.346 2.0 12 1.2810 0.3810
1.346 3.0 18 1.2346 0.4048
1.107 4.0 24 1.1917 0.4048
0.9637 5.0 30 1.1623 0.3571
0.9637 6.0 36 1.1357 0.4048
0.8241 7.0 42 1.1137 0.4286
0.8241 8.0 48 1.0906 0.4286
0.6746 9.0 54 1.0721 0.4286
0.594 10.0 60 1.0502 0.4286
0.594 11.0 66 1.0303 0.4286
0.4897 12.0 72 1.0072 0.4524
0.4897 13.0 78 0.9837 0.4762
0.4223 14.0 84 0.9800 0.4762
0.3482 15.0 90 0.9580 0.5
0.3482 16.0 96 0.9315 0.5238
0.2808 17.0 102 0.9182 0.5238
0.2808 18.0 108 0.9032 0.5714
0.2441 19.0 114 0.8918 0.6190
0.2119 20.0 120 0.8729 0.6190
0.2119 21.0 126 0.8574 0.6190
0.1699 22.0 132 0.8454 0.6190
0.1699 23.0 138 0.8308 0.6190
0.1443 24.0 144 0.8166 0.6190
0.1255 25.0 150 0.8066 0.6905
0.1255 26.0 156 0.8088 0.6905
0.1078 27.0 162 0.7901 0.6905
0.1078 28.0 168 0.7892 0.6667
0.094 29.0 174 0.7900 0.6667
0.0785 30.0 180 0.7761 0.6667
0.0785 31.0 186 0.7673 0.6667
0.071 32.0 192 0.7632 0.6667
0.071 33.0 198 0.7572 0.6667
0.066 34.0 204 0.7549 0.6667
0.0595 35.0 210 0.7582 0.6667
0.0595 36.0 216 0.7573 0.6667
0.0553 37.0 222 0.7569 0.6667
0.0553 38.0 228 0.7526 0.6667
0.0524 39.0 234 0.7502 0.6667
0.0501 40.0 240 0.7502 0.6667
0.0501 41.0 246 0.7508 0.6667
0.0507 42.0 252 0.7508 0.6667
0.0507 43.0 258 0.7508 0.6667
0.0466 44.0 264 0.7508 0.6667
0.0501 45.0 270 0.7508 0.6667
0.0501 46.0 276 0.7508 0.6667
0.0512 47.0 282 0.7508 0.6667
0.0512 48.0 288 0.7508 0.6667
0.0478 49.0 294 0.7508 0.6667
0.0501 50.0 300 0.7508 0.6667

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1