NER-BERT
This model is a fine-tuned version of dslim/bert-base-NER on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0001
- Token Accuracy: 1.0000
- Token Precision: 1.0000
- Token Recall: 1.0000
- Token F1: 1.0000
- Entity Precision: 0.9998
- Entity Recall: 0.9998
- Entity F1: 0.9998
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Token Accuracy | Token Precision | Token Recall | Token F1 | Entity Precision | Entity Recall | Entity F1 |
---|---|---|---|---|---|---|---|---|---|---|
0.0004 | 1.0 | 2250 | 0.0002 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9994 | 0.9995 | 0.9995 |
0.0001 | 2.0 | 4500 | 0.0001 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9998 | 0.9998 | 0.9998 |
0.0001 | 3.0 | 6750 | 0.0001 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9998 | 0.9998 | 0.9998 |
Framework versions
- Transformers 4.50.2
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 18
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for hiudev/NER-BERT
Base model
dslim/bert-base-NER