NER-BERT

This model is a fine-tuned version of dslim/bert-base-NER on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0001
  • Token Accuracy: 1.0000
  • Token Precision: 1.0000
  • Token Recall: 1.0000
  • Token F1: 1.0000
  • Entity Precision: 0.9998
  • Entity Recall: 0.9998
  • Entity F1: 0.9998

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Token Accuracy Token Precision Token Recall Token F1 Entity Precision Entity Recall Entity F1
0.0004 1.0 2250 0.0002 1.0000 1.0000 1.0000 1.0000 0.9994 0.9995 0.9995
0.0001 2.0 4500 0.0001 1.0000 1.0000 1.0000 1.0000 0.9998 0.9998 0.9998
0.0001 3.0 6750 0.0001 1.0000 1.0000 1.0000 1.0000 0.9998 0.9998 0.9998

Framework versions

  • Transformers 4.50.2
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
18
Safetensors
Model size
108M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for hiudev/NER-BERT

Finetuned
(20)
this model