|
--- |
|
language: |
|
- zh |
|
- en |
|
license: apache-2.0 |
|
model-index: |
|
- name: chinese-alpaca-2-13b |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: AI2 Reasoning Challenge (25-Shot) |
|
type: ai2_arc |
|
config: ARC-Challenge |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: acc_norm |
|
value: 58.7 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ziqingyang/chinese-alpaca-2-13b |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: HellaSwag (10-Shot) |
|
type: hellaswag |
|
split: validation |
|
args: |
|
num_few_shot: 10 |
|
metrics: |
|
- type: acc_norm |
|
value: 79.74 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ziqingyang/chinese-alpaca-2-13b |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU (5-Shot) |
|
type: cais/mmlu |
|
config: all |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 55.1 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ziqingyang/chinese-alpaca-2-13b |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: TruthfulQA (0-shot) |
|
type: truthful_qa |
|
config: multiple_choice |
|
split: validation |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: mc2 |
|
value: 50.22 |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ziqingyang/chinese-alpaca-2-13b |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Winogrande (5-shot) |
|
type: winogrande |
|
config: winogrande_xl |
|
split: validation |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 75.69 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ziqingyang/chinese-alpaca-2-13b |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GSM8k (5-shot) |
|
type: gsm8k |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 10.46 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ziqingyang/chinese-alpaca-2-13b |
|
name: Open LLM Leaderboard |
|
--- |
|
|
|
# Chinese-Alpaca-2-13B |
|
|
|
**This is the full Chinese-Alpaca-2-13B model,which can be loaded directly for inference and full-parameter training.** |
|
|
|
**Related models👇** |
|
* Long context base models |
|
* [Chinese-LLaMA-2-7B-16K (full model)](https://huggingface.co/hfl/chinese-llama-2-7b-16k) |
|
* [Chinese-LLaMA-2-LoRA-7B-16K (LoRA model)](https://huggingface.co/hfl/chinese-llama-2-lora-7b-16k) |
|
* [Chinese-LLaMA-2-13B-16K (full model)](https://huggingface.co/hfl/chinese-llama-2-13b-16k) |
|
* [Chinese-LLaMA-2-LoRA-13B-16K (LoRA model)](https://huggingface.co/hfl/chinese-llama-2-lora-13b-16k) |
|
* Base models |
|
* [Chinese-LLaMA-2-7B (full model)](https://huggingface.co/hfl/chinese-llama-2-7b) |
|
* [Chinese-LLaMA-2-LoRA-7B (LoRA model)](https://huggingface.co/hfl/chinese-llama-2-lora-7b) |
|
* [Chinese-LLaMA-2-13B (full model)](https://huggingface.co/hfl/chinese-llama-2-13b) |
|
* [Chinese-LLaMA-2-LoRA-13B (LoRA model)](https://huggingface.co/hfl/chinese-llama-2-lora-13b) |
|
* Instruction/Chat models |
|
* [Chinese-Alpaca-2-7B (full model)](https://huggingface.co/hfl/chinese-alpaca-2-7b) |
|
* [Chinese-Alpaca-2-LoRA-7B (LoRA model)](https://huggingface.co/hfl/chinese-alpaca-2-lora-7b) |
|
* [Chinese-Alpaca-2-13B (full model)](https://huggingface.co/hfl/chinese-alpaca-2-13b) |
|
* [Chinese-Alpaca-2-LoRA-13B (LoRA model)](https://huggingface.co/hfl/chinese-alpaca-2-lora-13b) |
|
|
|
|
|
# Description of Chinese-LLaMA-Alpaca-2 |
|
This project is based on the Llama-2, released by Meta, and it is the second generation of the Chinese LLaMA & Alpaca LLM project. We open-source Chinese LLaMA-2 (foundation model) and Alpaca-2 (instruction-following model). These models have been expanded and optimized with Chinese vocabulary beyond the original Llama-2. We used large-scale Chinese data for incremental pre-training, which further improved the fundamental semantic understanding of the Chinese language, resulting in a significant performance improvement compared to the first-generation models. The relevant models support a 4K context and can be expanded up to 18K+ using the NTK method. |
|
|
|
The main contents of this project include: |
|
|
|
* 🚀 New extended Chinese vocabulary beyond Llama-2, open-sourcing the Chinese LLaMA-2 and Alpaca-2 LLMs. |
|
* 🚀 Open-sourced the pre-training and instruction finetuning (SFT) scripts for further tuning on user's data |
|
* 🚀 Quickly deploy and experience the quantized LLMs on CPU/GPU of personal PC |
|
* 🚀 Support for LLaMA ecosystems like 🤗transformers, llama.cpp, text-generation-webui, LangChain, vLLM etc. |
|
|
|
Please refer to [https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/) for details. |
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ziqingyang__chinese-alpaca-2-13b) |
|
|
|
| Metric |Value| |
|
|---------------------------------|----:| |
|
|Avg. |54.99| |
|
|AI2 Reasoning Challenge (25-Shot)|58.70| |
|
|HellaSwag (10-Shot) |79.74| |
|
|MMLU (5-Shot) |55.10| |
|
|TruthfulQA (0-shot) |50.22| |
|
|Winogrande (5-shot) |75.69| |
|
|GSM8k (5-shot) |10.46| |
|
|
|
|