Qwen2.5-VL-7B-Instruct-GPTQ-Int4

This is an UNOFFICIAL GPTQ-Int4 quantized version of the Qwen2.5-VL-7B-Instruct model using gptqmodel library.

The model is compatible with the latest transformers library (which can run non-quantized Qwen2.5-VL models).

Performance

Model Size (Disk) ChartQA (test) OCRBench
Qwen2.5-VL-3B-Instruct 7.1 GB 83.48 791
Qwen2.5-VL-3B-Instruct-AWQ 3.2 GB 82.52 786
Qwen2.5-VL-3B-Instruct-GPTQ-Int4 3.2 GB 82.56 784
Qwen2.5-VL-7B-Instruct 16.0 GB 83.2 846
Qwen2.5-VL-7B-Instruct-AWQ 6.5 GB 79.68 837
Qwen2.5-VL-7B-Instruct-GPTQ-Int4 6.5 GB 81.48 845

Note

  • Evaluations are performed using lmms-eval with default setting.
  • GPTQ models are computationally more effective (fewer VRAM usage, faster inference speed) than AWQ series in these evaluations.

Quick Tour

Install the required libraries:

pip install git+https://github.com/huggingface/transformers accelerate qwen-vl-utils
pip install gptqmodel tokenicer # optional

Sample code:

from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from qwen_vl_utils import process_vision_info

model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    "hfl/Qwen2.5-VL-7B-Instruct-GPTQ-Int4", 
    attn_implementation="flash_attention_2",
    device_map="auto"
)
processor = AutoProcessor.from_pretrained("hfl/Qwen2.5-VL-7B-Instruct-GPTQ-Int4")

messages = [{
    "role": "user",
    "content": [
        {"type": "image", "image": "https://raw.githubusercontent.com/ymcui/Chinese-LLaMA-Alpaca-3/refs/heads/main/pics/banner.png"},
        {"type": "text", "text": "请你描述一下这张图片。"},
    ],
}]

text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
    text=[text], images=image_inputs, videos=video_inputs,
    padding=True, return_tensors="pt",
).to("cuda")

generated_ids = model.generate(**inputs, max_new_tokens=512)
generated_ids_trimmed = [out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
output_text = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)
print(output_text)

Results:

['这张图片展示了一个标志或图标,包含以下内容:\n\n1. 左侧有一个圆形的图标,里面有一幅插画,描绘了两只羊驼(Alpaca),背景中有树木和一座亭子。\n2. 中间部分用中文写着“中文LLaMA & Alpaca大模型”,意思是“Chinese LLaMA & Alpaca Large Language Models”。\n3. 右侧有一个黑色的数字“3”,旁边有一些电路板的图案。\n\n整体来看,这个标志可能与中文的大型语言模型(LLaMA和Alpaca)有关,可能是一个项目、平台或产品的名称。']

Disclaimer

  • This is NOT an official model by Qwen. Use at your own risk.
  • For detailed usage, please check Qwen2.5-VL's page.
Downloads last month
358
Safetensors
Model size
2.64B params
Tensor type
I32
·
BF16
·
FP16
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for hfl/Qwen2.5-VL-7B-Instruct-GPTQ-Int4

Quantized
(20)
this model