Qwen2.5-VL-7B-Instruct-GPTQ-Int4
This is an UNOFFICIAL GPTQ-Int4 quantized version of the Qwen2.5-VL-7B-Instruct
model using gptqmodel
library.
The model is compatible with the latest transformers
library (which can run non-quantized Qwen2.5-VL models).
Performance
Model | Size (Disk) | ChartQA (test) | OCRBench |
---|---|---|---|
Qwen2.5-VL-3B-Instruct | 7.1 GB | 83.48 | 791 |
Qwen2.5-VL-3B-Instruct-AWQ | 3.2 GB | 82.52 | 786 |
Qwen2.5-VL-3B-Instruct-GPTQ-Int4 | 3.2 GB | 82.56 | 784 |
Qwen2.5-VL-7B-Instruct | 16.0 GB | 83.2 | 846 |
Qwen2.5-VL-7B-Instruct-AWQ | 6.5 GB | 79.68 | 837 |
Qwen2.5-VL-7B-Instruct-GPTQ-Int4 | 6.5 GB | 81.48 | 845 |
Note
- Evaluations are performed using lmms-eval with default setting.
- GPTQ models are computationally more effective (fewer VRAM usage, faster inference speed) than AWQ series in these evaluations.
Quick Tour
Install the required libraries:
pip install git+https://github.com/huggingface/transformers accelerate qwen-vl-utils
pip install gptqmodel tokenicer # optional
Sample code:
from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from qwen_vl_utils import process_vision_info
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
"hfl/Qwen2.5-VL-7B-Instruct-GPTQ-Int4",
attn_implementation="flash_attention_2",
device_map="auto"
)
processor = AutoProcessor.from_pretrained("hfl/Qwen2.5-VL-7B-Instruct-GPTQ-Int4")
messages = [{
"role": "user",
"content": [
{"type": "image", "image": "https://raw.githubusercontent.com/ymcui/Chinese-LLaMA-Alpaca-3/refs/heads/main/pics/banner.png"},
{"type": "text", "text": "请你描述一下这张图片。"},
],
}]
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text], images=image_inputs, videos=video_inputs,
padding=True, return_tensors="pt",
).to("cuda")
generated_ids = model.generate(**inputs, max_new_tokens=512)
generated_ids_trimmed = [out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
output_text = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)
print(output_text)
Results:
['这张图片展示了一个标志或图标,包含以下内容:\n\n1. 左侧有一个圆形的图标,里面有一幅插画,描绘了两只羊驼(Alpaca),背景中有树木和一座亭子。\n2. 中间部分用中文写着“中文LLaMA & Alpaca大模型”,意思是“Chinese LLaMA & Alpaca Large Language Models”。\n3. 右侧有一个黑色的数字“3”,旁边有一些电路板的图案。\n\n整体来看,这个标志可能与中文的大型语言模型(LLaMA和Alpaca)有关,可能是一个项目、平台或产品的名称。']
Disclaimer
- This is NOT an official model by Qwen. Use at your own risk.
- For detailed usage, please check Qwen2.5-VL's page.
- Downloads last month
- 358
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for hfl/Qwen2.5-VL-7B-Instruct-GPTQ-Int4
Base model
Qwen/Qwen2.5-VL-7B-Instruct