Qwen3 0.6B - Real Estate Fine-Tuned Adapter (LoRA)
This model is a Qwen3-0.6B adapter fine-tuned using LoRA on a real estate dataset for tasks such as property description generation and value estimation. Fine-tuning was performed using LLaMA Factory.
Base Model
Qwen/Qwen3-0.6B
- Fine-tuned using LoRA with
lora_rank=64
targeting all transformer layers.
Fine-Tuning Details
Setting | Value |
---|---|
Framework | LLaMA Factory |
Finetuning Type | LoRA |
LoRA Rank | 64 |
Dataset | Custom real estate dataset |
Cutoff Length | 3500 tokens |
Epochs | 3 |
Batch Size | 1 (accumulated over 8 steps) |
Learning Rate | 1e-4 |
Scheduler | Cosine |
Evaluation Metric | eval_loss |
Best Model Criterion | Lowest validation loss |
Dataset
- Sample LlaMa-Factory Dataset :
heba1998/real-estate-data-for-llm-fine-tuning
- Full Dataset:
heba1998/real-estate-data-for-llm-fine-tuning
Usage
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
base_model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-0.6B", device_map="auto", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-0.6B", trust_remote_code=True)
adapter = PeftModel.from_pretrained(base_model, "heba1998/Qwen-LoRA-Estate")
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support