|
---
|
|
library_name: peft
|
|
license: other
|
|
base_model: Qwen/Qwen2.5-Coder-3B
|
|
tags:
|
|
- llama-factory
|
|
- lora
|
|
- generated_from_trainer
|
|
model-index:
|
|
- name: train_2025-04-13-11-42-17
|
|
results: []
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# train_2025-04-13-11-42-17 |
|
|
|
This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-3B](https://huggingface.co/Qwen/Qwen2.5-Coder-3B) on the hccsri dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 3.0146 |
|
- Num Input Tokens Seen: 304528 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 4 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: cosine |
|
- num_epochs: 1.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |
|
|:-------------:|:------:|:----:|:---------------:|:-----------------:| |
|
| 3.3828 | 0.0421 | 100 | 3.3995 | 12336 | |
|
| 3.7301 | 0.0842 | 200 | 3.3119 | 25168 | |
|
| 2.7913 | 0.1263 | 300 | 3.2942 | 38256 | |
|
| 2.9739 | 0.1684 | 400 | 3.2371 | 51344 | |
|
| 2.4265 | 0.2105 | 500 | 3.2291 | 64896 | |
|
| 3.2421 | 0.2526 | 600 | 3.1979 | 77584 | |
|
| 3.1406 | 0.2947 | 700 | 3.1769 | 89952 | |
|
| 3.1426 | 0.3368 | 800 | 3.1570 | 102976 | |
|
| 3.101 | 0.3789 | 900 | 3.1375 | 115536 | |
|
| 3.3436 | 0.4211 | 1000 | 3.1259 | 129104 | |
|
| 3.2059 | 0.4632 | 1100 | 3.0889 | 142176 | |
|
| 3.2607 | 0.5053 | 1200 | 3.0811 | 155360 | |
|
| 2.8431 | 0.5474 | 1300 | 3.0604 | 168080 | |
|
| 3.3622 | 0.5895 | 1400 | 3.0450 | 181424 | |
|
| 2.2921 | 0.6316 | 1500 | 3.0402 | 193696 | |
|
| 3.1937 | 0.6737 | 1600 | 3.0319 | 206800 | |
|
| 3.2635 | 0.7158 | 1700 | 3.0285 | 219920 | |
|
| 2.9374 | 0.7579 | 1800 | 3.0246 | 232224 | |
|
| 3.3592 | 0.8 | 1900 | 3.0196 | 244976 | |
|
| 3.1163 | 0.8421 | 2000 | 3.0173 | 256912 | |
|
| 2.8533 | 0.8842 | 2100 | 3.0168 | 270112 | |
|
| 3.6021 | 0.9263 | 2200 | 3.0151 | 282512 | |
|
| 3.2839 | 0.9684 | 2300 | 3.0146 | 295680 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.15.1 |
|
- Transformers 4.51.1 |
|
- Pytorch 2.6.0+cu118 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |