whisper-base-Ko / README.md
haseong8012's picture
End of training
09c77a5
metadata
language:
  - ko
license: apache-2.0
base_model: openai/whisper-base
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - kresnik/zeroth_korean
metrics:
  - wer
model-index:
  - name: openai/whisper-base-Ko
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: kresnik/zeroth_korean
          type: kresnik/zeroth_korean
          config: clean
          split: test
          args: 'config: ko, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 6.550218340611353

openai/whisper-base-Ko

This model is a fine-tuned version of openai/whisper-base on the kresnik/zeroth_korean dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0970
  • Wer: 6.5502
  • Cer: 2.9012

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.3775 0.72 500 0.2690 22.8580 8.2443
0.1316 1.44 1000 0.1760 15.9012 6.8624
0.0658 2.16 1500 0.1285 10.6761 4.2753
0.0273 2.87 2000 0.1133 10.6309 5.0251
0.0112 3.59 2500 0.1040 8.0560 3.3448
0.0055 4.31 3000 0.1010 7.3633 3.2389
0.0024 5.03 3500 0.0979 6.6105 2.9837
0.0013 5.75 4000 0.0967 6.7309 2.9680
0.0009 6.47 4500 0.0967 6.6707 2.9405
0.0008 7.18 5000 0.0970 6.5502 2.9012

Framework versions

  • Transformers 4.33.2
  • Pytorch 1.12.1
  • Datasets 2.14.5
  • Tokenizers 0.13.3