File size: 863 Bytes
659e0b9 ffe3a22 659e0b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 |
# Code for using the DGA detector model
library(keras)
library(plumber)
library(reticulate)
hfhub <- reticulate::import('huggingface_hub')
model <- hfhub$from_pretrained_keras("harpomaxx/dga-detector")
modelid="cacic-2018-model"
valid_characters <- "$abcdefghijklmnopqrstuvwxyz0123456789-_."
valid_characters_vector <- strsplit(valid_characters,split="")[[1]]
tokens <- 0:length(valid_characters_vector)
names(tokens) <- valid_characters_vector
# DGA prediction function
predict<-function(domain){
domain_encoded <-
sapply(
unlist(strsplit(tolower(domain),split="")), function(x) tokens [[x]]
)
domain_encoded<-pad_sequences(t(domain_encoded),maxlen=45,padding='post', truncating='post')
prediction<-predict(model,domain_encoded)
return(list(modelid=modelid,domain=domain,class=ifelse(prediction[1]>0.9,1,0),probability=prediction[1]))
}
|