add dga-detector sample code
Browse files- dga-detector.R +25 -0
dga-detector.R
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Code for using the DGA detector model
|
2 |
+
|
3 |
+
library(keras)
|
4 |
+
library(plumber)
|
5 |
+
library(reticulate)
|
6 |
+
|
7 |
+
hfhub <- reticulate::import('huggingface_hub')
|
8 |
+
model <- hfhub$from_pretrained_keras("harpomaxx/dga-detector")
|
9 |
+
modelid="cacic-2018-model"
|
10 |
+
valid_characters <- "$abcdefghijklmnopqrstuvwxyz0123456789-_."
|
11 |
+
valid_characters_vector <- strsplit(valid_characters,split="")[[1]]
|
12 |
+
tokens <- 0:length(valid_characters_vector)
|
13 |
+
names(tokens) <- valid_characters_vector
|
14 |
+
|
15 |
+
# DGA prediction function
|
16 |
+
function(domain){
|
17 |
+
domain_encoded <-
|
18 |
+
sapply(
|
19 |
+
unlist(strsplit(tolower(domain),split="")), function(x) tokens [[x]]
|
20 |
+
)
|
21 |
+
domain_encoded<-pad_sequences(t(domain_encoded),maxlen=45,padding='post', truncating='post')
|
22 |
+
|
23 |
+
prediction<-predict(model,domain_encoded)
|
24 |
+
return(list(modelid=modelid,domain=domain,class=ifelse(prediction[1]>0.9,1,0),probability=prediction[1]))
|
25 |
+
}
|