add dga-detector sample code
Browse files- dga-detector.R +25 -0
dga-detector.R
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Code for using the DGA detector model
|
| 2 |
+
|
| 3 |
+
library(keras)
|
| 4 |
+
library(plumber)
|
| 5 |
+
library(reticulate)
|
| 6 |
+
|
| 7 |
+
hfhub <- reticulate::import('huggingface_hub')
|
| 8 |
+
model <- hfhub$from_pretrained_keras("harpomaxx/dga-detector")
|
| 9 |
+
modelid="cacic-2018-model"
|
| 10 |
+
valid_characters <- "$abcdefghijklmnopqrstuvwxyz0123456789-_."
|
| 11 |
+
valid_characters_vector <- strsplit(valid_characters,split="")[[1]]
|
| 12 |
+
tokens <- 0:length(valid_characters_vector)
|
| 13 |
+
names(tokens) <- valid_characters_vector
|
| 14 |
+
|
| 15 |
+
# DGA prediction function
|
| 16 |
+
function(domain){
|
| 17 |
+
domain_encoded <-
|
| 18 |
+
sapply(
|
| 19 |
+
unlist(strsplit(tolower(domain),split="")), function(x) tokens [[x]]
|
| 20 |
+
)
|
| 21 |
+
domain_encoded<-pad_sequences(t(domain_encoded),maxlen=45,padding='post', truncating='post')
|
| 22 |
+
|
| 23 |
+
prediction<-predict(model,domain_encoded)
|
| 24 |
+
return(list(modelid=modelid,domain=domain,class=ifelse(prediction[1]>0.9,1,0),probability=prediction[1]))
|
| 25 |
+
}
|