See axolotl config
axolotl version: 0.8.0
base_model: NewEden/MistralAI-Nemo-Instruct-ChatML
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: hardlyworking/HardlyRP
type: chat_template
chat_template: chatml
roles_to_train: ["gpt"]
field_messages: conversations
message_field_role: from
message_field_content: value
train_on_eos: turn
- path: jeiku/Writing
type: completion
field: text
shuffle_merged_datasets: true
dataset_prepared_path: dataset_preparedss
val_set_size: 0.0025
output_dir: 12b-out-0001-max_grad_norm
hub_model_id: hardlyworking/Sapphire-12B
hub_strategy: "all_checkpoints"
push_dataset_to_hub:
hf_use_auth_token: true
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_layer_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: true
sequence_len: 8192
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
max_grad_norm: 0.001
wandb_project: Sapphire
wandb_entity:
wandb_watch:
wandb_name: Sapphire
wandb_log_model:
evals_per_epoch: 8
eval_table_size:
eval_max_new_tokens: 128
gradient_accumulation_steps: 8
micro_batch_size: 2
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 2e-6
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:
warmup_ratio: 0.05
saves_per_epoch: 1
debug:
weight_decay: 0.0001
fsdp:
fsdp_config:
special_tokens:
pad_token: <pad>
Sapphire-12B
This model is a fine-tuned version of NewEden/MistralAI-Nemo-Instruct-ChatML on the hardlyworking/HardlyRP and the jeiku/Writing datasets. It achieves the following results on the evaluation set:
- Loss: 1.6799
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 30
- num_epochs: 2.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.8932 | 0.0033 | 1 | 1.9155 |
1.7729 | 0.1262 | 38 | 1.7802 |
1.7163 | 0.2525 | 76 | 1.7111 |
1.6484 | 0.3787 | 114 | 1.6970 |
1.7006 | 0.5050 | 152 | 1.6907 |
1.7276 | 0.6312 | 190 | 1.6874 |
1.7042 | 0.7575 | 228 | 1.6847 |
1.5575 | 0.8837 | 266 | 1.6825 |
1.5451 | 1.0100 | 304 | 1.6816 |
1.6592 | 1.1362 | 342 | 1.6807 |
1.7344 | 1.2625 | 380 | 1.6805 |
1.6953 | 1.3887 | 418 | 1.6798 |
1.5799 | 1.5150 | 456 | 1.6799 |
1.5241 | 1.6412 | 494 | 1.6799 |
1.548 | 1.7674 | 532 | 1.6797 |
1.6254 | 1.8937 | 570 | 1.6799 |
Framework versions
- Transformers 4.51.0
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 69
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for hardlyworking/Sapphire-12B
Base model
mistralai/Mistral-Nemo-Base-2407
Finetuned
NewEden/MistralAI-Nemo-Instruct-ChatML