See axolotl config
axolotl version: 0.10.0
base_model: Salesforce/xgen-small-4B-instruct-r
load_in_8bit: false
load_in_4bit: false
strict: false
chat_template: chatml
datasets:
- path: hardlyworking/HardlyRPv2
type: chat_template
split: train
field_messages: conversations
message_property_mappings:
role: from
content: value
val_set_size: 0.1
output_dir: ./outputs/out
dataset_prepared_path: last_run_prepared
shuffle_merged_datasets: true
hub_model_id: hardlyworking/HoldMy4B
hub_strategy: "all_checkpoints"
push_dataset_to_hub:
hf_use_auth_token: true
plugins:
- axolotl.integrations.liger.LigerPlugin
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
liger_rope: true
liger_rms_norm: true
liger_layer_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: false
cut_cross_entropy: true
sequence_len: 32768
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
wandb_project: Xgen4B
wandb_entity:
wandb_watch:
wandb_name: Xgen4B
wandb_log_model:
evals_per_epoch: 8
eval_table_size:
eval_max_new_tokens: 128
gradient_accumulation_steps: 2
micro_batch_size: 2
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 1e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: offload
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:
deepspeed:
warmup_ratio: 0.05
saves_per_epoch: 1
debug:
weight_decay: 0.01
fsdp:
fsdp_config:
special_tokens:
pad_token:
HoldMy4B
This model is a fine-tuned version of Salesforce/xgen-small-4B-instruct-r on the hardlyworking/HardlyRPv2 dataset. It achieves the following results on the evaluation set:
- Loss: 2.1637
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- total_eval_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 24
- training_steps: 480
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0 | 0 | 2.6420 |
2.0119 | 0.125 | 30 | 2.2105 |
1.8963 | 0.25 | 60 | 2.1865 |
1.8623 | 0.375 | 90 | 2.1787 |
1.8528 | 0.5 | 120 | 2.1746 |
1.8784 | 0.625 | 150 | 2.1706 |
1.9961 | 0.75 | 180 | 2.1686 |
1.8748 | 0.875 | 210 | 2.1672 |
2.0385 | 1.0 | 240 | 2.1657 |
1.9327 | 1.125 | 270 | 2.1646 |
1.8509 | 1.25 | 300 | 2.1645 |
1.8279 | 1.375 | 330 | 2.1640 |
1.8271 | 1.5 | 360 | 2.1638 |
1.8589 | 1.625 | 390 | 2.1637 |
1.9824 | 1.75 | 420 | 2.1637 |
1.8668 | 1.875 | 450 | 2.1637 |
2.0332 | 2.0 | 480 | 2.1637 |
Framework versions
- Transformers 4.52.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for hardlyworking/HoldMy4BKTO
Base model
Salesforce/xgen-small-4B-instruct-r