File size: 4,234 Bytes
9daab4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
---
library_name: transformers
license: apache-2.0
base_model: GreenerPastures/Bald-Beaver-8B
tags:
- axolotl
- generated_from_trainer
datasets:
- NewEden/Joe-Games
model-index:
- name: Games8B
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.10.0.dev0`
```yaml
base_model: GreenerPastures/Bald-Beaver-8B
load_in_8bit: false
load_in_4bit: false
strict: false
chat_template: qwen3
datasets:
- path: NewEden/Joe-Games
type: completion
val_set_size: 0.05
output_dir: ./outputs/out
dataset_prepared_path: last_run_prepared
shuffle_merged_datasets: true
hub_model_id: hardlyworking/Games8B
hub_strategy: "all_checkpoints"
push_dataset_to_hub:
hf_use_auth_token: true
plugins:
- axolotl.integrations.liger.LigerPlugin
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
liger_rope: true
liger_rms_norm: true
liger_layer_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: false
cut_cross_entropy: true
sequence_len: 32768
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
wandb_project: Qwen8B
wandb_entity:
wandb_watch:
wandb_name: Qwen8B
wandb_log_model:
evals_per_epoch: 8
eval_table_size:
eval_max_new_tokens: 128
max_grad_norm: 1.0
gradient_accumulation_steps: 1
micro_batch_size: 1
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 1e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: offload
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:
deepspeed:
warmup_ratio: 0.05
saves_per_epoch: 1
debug:
weight_decay: 0.01
fsdp:
fsdp_config:
special_tokens:
pad_token:
```
</details><br>
# Games8B
This model is a fine-tuned version of [GreenerPastures/Bald-Beaver-8B](https://huggingface.co/GreenerPastures/Bald-Beaver-8B) on the NewEden/Joe-Games dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9796
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 4
- total_eval_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 13
- num_epochs: 2.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.6433 | 0.0074 | 1 | 2.0240 |
| 1.5696 | 0.125 | 17 | 2.0077 |
| 2.5862 | 0.25 | 34 | 1.9995 |
| 1.9231 | 0.375 | 51 | 1.9944 |
| 1.9655 | 0.5 | 68 | 1.9908 |
| 1.6909 | 0.625 | 85 | 1.9880 |
| 1.8634 | 0.75 | 102 | 1.9857 |
| 1.6684 | 0.875 | 119 | 1.9832 |
| 1.8727 | 1.0 | 136 | 1.9816 |
| 1.542 | 1.125 | 153 | 1.9806 |
| 2.5733 | 1.25 | 170 | 1.9801 |
| 1.8934 | 1.375 | 187 | 1.9797 |
| 1.9386 | 1.5 | 204 | 1.9796 |
| 1.6764 | 1.625 | 221 | 1.9796 |
| 1.8524 | 1.75 | 238 | 1.9796 |
| 1.661 | 1.875 | 255 | 1.9795 |
| 1.8697 | 2.0 | 272 | 1.9796 |
### Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
|