See axolotl config
axolotl version: 0.10.0.dev0
base_model: GreenerPastures/Bald-Beaver-8B
load_in_8bit: false
load_in_4bit: false
strict: false
chat_template: qwen3
datasets:
- path: NewEden/Joe-Games
type: completion
val_set_size: 0.05
output_dir: ./outputs/out
dataset_prepared_path: last_run_prepared
shuffle_merged_datasets: true
hub_model_id: hardlyworking/Games8B
hub_strategy: "all_checkpoints"
push_dataset_to_hub:
hf_use_auth_token: true
plugins:
- axolotl.integrations.liger.LigerPlugin
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
liger_rope: true
liger_rms_norm: true
liger_layer_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: false
cut_cross_entropy: true
sequence_len: 32768
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
wandb_project: Qwen8B
wandb_entity:
wandb_watch:
wandb_name: Qwen8B
wandb_log_model:
evals_per_epoch: 8
eval_table_size:
eval_max_new_tokens: 128
max_grad_norm: 1.0
gradient_accumulation_steps: 1
micro_batch_size: 1
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 1e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: offload
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:
deepspeed:
warmup_ratio: 0.05
saves_per_epoch: 1
debug:
weight_decay: 0.01
fsdp:
fsdp_config:
special_tokens:
pad_token:
Games8B
This model is a fine-tuned version of GreenerPastures/Bald-Beaver-8B on the NewEden/Joe-Games dataset. It achieves the following results on the evaluation set:
- Loss: 1.9796
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 4
- total_eval_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 13
- num_epochs: 2.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.6433 | 0.0074 | 1 | 2.0240 |
1.5696 | 0.125 | 17 | 2.0077 |
2.5862 | 0.25 | 34 | 1.9995 |
1.9231 | 0.375 | 51 | 1.9944 |
1.9655 | 0.5 | 68 | 1.9908 |
1.6909 | 0.625 | 85 | 1.9880 |
1.8634 | 0.75 | 102 | 1.9857 |
1.6684 | 0.875 | 119 | 1.9832 |
1.8727 | 1.0 | 136 | 1.9816 |
1.542 | 1.125 | 153 | 1.9806 |
2.5733 | 1.25 | 170 | 1.9801 |
1.8934 | 1.375 | 187 | 1.9797 |
1.9386 | 1.5 | 204 | 1.9796 |
1.6764 | 1.625 | 221 | 1.9796 |
1.8524 | 1.75 | 238 | 1.9796 |
1.661 | 1.875 | 255 | 1.9795 |
1.8697 | 2.0 | 272 | 1.9796 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 14
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support