See axolotl config
axolotl version: 0.8.0.dev0
base_model: hardlyworking/Aura-12B
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: hardlyworking/LighterRPSet
type: chat_template
chat_template: chatml
roles_to_train: ["gpt"]
field_messages: conversations
message_field_role: from
message_field_content: value
train_on_eos: turn
- path: jeiku/Writing
type: completion
field: text
shuffle_merged_datasets: true
dataset_prepared_path:
val_set_size: 0.01
output_dir: ./output/out
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_layer_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: true
hub_model_id: hardlyworking/Test12B
hub_strategy: "all_checkpoints"
push_dataset_to_hub:
hf_use_auth_token: true
sequence_len: 8192
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
wandb_project: Aura-12B
wandb_entity:
wandb_watch:
wandb_name: Aura-12B
wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 5e-6
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
max_grad_norm: 0.01
warmup_ratio: 0.1
evals_per_epoch: 2
eval_table_size:
eval_max_new_tokens:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.05
fsdp:
fsdp_config:
special_tokens:
Test12B
This model is a fine-tuned version of hardlyworking/Aura-12B on the hardlyworking/LighterRPSet and the jeiku/Writing datasets. It achieves the following results on the evaluation set:
- Loss: 2.2116
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 41
- num_epochs: 2.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.2984 | 0.0048 | 1 | 2.5678 |
1.8777 | 0.5009 | 104 | 2.2361 |
2.5154 | 1.0048 | 208 | 2.2155 |
1.8757 | 1.5057 | 312 | 2.2116 |
Framework versions
- Transformers 4.50.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 9
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support