SentenceTransformer based on sentence-transformers/all-distilroberta-v1
This is a sentence-transformers model finetuned from sentence-transformers/all-distilroberta-v1. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-distilroberta-v1
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("hanwenzhu/all-distilroberta-v1-lr2e-4-bs1024-nneg3-mlbs-mar03")
# Run inference
sentences = [
'Mathlib.Algebra.Polynomial.HasseDeriv#31',
'Polynomial.hasseDeriv_coeff',
'HomologicalComplex.isZero_X_of_isStrictlySupported',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 5,854,451 training samples
- Columns:
state_name
andpremise_name
- Approximate statistics based on the first 1000 samples:
state_name premise_name type string string details - min: 10 tokens
- mean: 17.28 tokens
- max: 22 tokens
- min: 3 tokens
- mean: 11.34 tokens
- max: 38 tokens
- Samples:
state_name premise_name Mathlib.RingTheory.Ideal.Norm.RelNorm#46
RingHomCompTriple.ids
Mathlib.RingTheory.Ideal.Norm.RelNorm#46
MonoidWithZeroHomClass.toMonoidHomClass
Mathlib.RingTheory.Ideal.Norm.RelNorm#46
Ideal.subset_span
- Loss:
loss.MaskedCachedMultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 1,959 evaluation samples
- Columns:
state_name
andpremise_name
- Approximate statistics based on the first 1000 samples:
state_name premise_name type string string details - min: 10 tokens
- mean: 17.08 tokens
- max: 24 tokens
- min: 5 tokens
- mean: 11.05 tokens
- max: 31 tokens
- Samples:
state_name premise_name Mathlib.Algebra.Algebra.Hom#80
AlgHom.commutes
Mathlib.Algebra.Algebra.NonUnitalSubalgebra#237
NonUnitalAlgHom.instNonUnitalAlgSemiHomClass
Mathlib.Algebra.Algebra.NonUnitalSubalgebra#237
NonUnitalAlgebra.mem_top
- Loss:
loss.MaskedCachedMultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 1024per_device_eval_batch_size
: 64learning_rate
: 0.0002num_train_epochs
: 1.0lr_scheduler_type
: cosinewarmup_ratio
: 0.03bf16
: Truedataloader_num_workers
: 4
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 1024per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 0.0002weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1.0max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.03warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 4dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | loss |
---|---|---|---|
0.0017 | 10 | 7.5842 | - |
0.0035 | 20 | 6.4567 | - |
0.0052 | 30 | 5.9408 | - |
0.0070 | 40 | 5.7176 | - |
0.0087 | 50 | 5.5353 | - |
0.0101 | 58 | - | 2.2337 |
0.0105 | 60 | 5.4044 | - |
0.0122 | 70 | 5.3384 | - |
0.0140 | 80 | 5.2395 | - |
0.0157 | 90 | 5.1291 | - |
0.0175 | 100 | 5.1093 | - |
0.0192 | 110 | 5.0695 | - |
0.0203 | 116 | - | 1.9949 |
0.0210 | 120 | 4.9664 | - |
0.0227 | 130 | 4.973 | - |
0.0245 | 140 | 4.9065 | - |
0.0262 | 150 | 4.8961 | - |
0.0280 | 160 | 4.839 | - |
0.0297 | 170 | 4.8513 | - |
0.0304 | 174 | - | 1.9119 |
0.0315 | 180 | 4.7662 | - |
0.0332 | 190 | 4.7385 | - |
0.0350 | 200 | 4.7036 | - |
0.0367 | 210 | 4.7013 | - |
0.0385 | 220 | 4.6837 | - |
0.0402 | 230 | 4.6325 | - |
0.0406 | 232 | - | 1.7502 |
0.0420 | 240 | 4.5982 | - |
0.0437 | 250 | 4.5526 | - |
0.0455 | 260 | 4.5793 | - |
0.0472 | 270 | 4.545 | - |
0.0490 | 280 | 4.5173 | - |
0.0507 | 290 | 4.4595 | 1.6955 |
0.0525 | 300 | 4.4772 | - |
0.0542 | 310 | 4.4038 | - |
0.0560 | 320 | 4.4132 | - |
0.0577 | 330 | 4.4139 | - |
0.0595 | 340 | 4.3585 | - |
0.0609 | 348 | - | 1.6316 |
0.0612 | 350 | 4.3314 | - |
0.0630 | 360 | 4.3805 | - |
0.0647 | 370 | 4.2791 | - |
0.0665 | 380 | 4.2938 | - |
0.0682 | 390 | 4.2591 | - |
0.0700 | 400 | 4.262 | - |
0.0710 | 406 | - | 1.5723 |
0.0717 | 410 | 4.2108 | - |
0.0735 | 420 | 4.1723 | - |
0.0752 | 430 | 4.157 | - |
0.0769 | 440 | 4.1878 | - |
0.0787 | 450 | 4.1644 | - |
0.0804 | 460 | 4.1569 | - |
0.0811 | 464 | - | 1.5368 |
0.0822 | 470 | 4.139 | - |
0.0839 | 480 | 4.0872 | - |
0.0857 | 490 | 4.1169 | - |
0.0874 | 500 | 4.062 | - |
0.0892 | 510 | 4.1138 | - |
0.0909 | 520 | 4.1088 | - |
0.0913 | 522 | - | 1.5232 |
0.0927 | 530 | 4.0526 | - |
0.0944 | 540 | 4.0355 | - |
0.0962 | 550 | 3.9937 | - |
0.0979 | 560 | 3.9647 | - |
0.0997 | 570 | 3.9715 | - |
0.1014 | 580 | 3.9524 | 1.4901 |
0.1032 | 590 | 3.945 | - |
0.1049 | 600 | 3.9615 | - |
0.1067 | 610 | 3.9713 | - |
0.1084 | 620 | 3.9264 | - |
0.1102 | 630 | 3.9036 | - |
0.1116 | 638 | - | 1.4411 |
0.1119 | 640 | 3.8909 | - |
0.1137 | 650 | 3.901 | - |
0.1154 | 660 | 3.879 | - |
0.1172 | 670 | 3.8696 | - |
0.1189 | 680 | 3.8678 | - |
0.1207 | 690 | 3.8472 | - |
0.1217 | 696 | - | 1.4459 |
0.1224 | 700 | 3.8277 | - |
0.1242 | 710 | 3.8321 | - |
0.1259 | 720 | 3.812 | - |
0.1277 | 730 | 3.8386 | - |
0.1294 | 740 | 3.7583 | - |
0.1312 | 750 | 3.8007 | - |
0.1319 | 754 | - | 1.3644 |
0.1329 | 760 | 3.7337 | - |
0.1347 | 770 | 3.7554 | - |
0.1364 | 780 | 3.7518 | - |
0.1382 | 790 | 3.6993 | - |
0.1399 | 800 | 3.7477 | - |
0.1417 | 810 | 3.6979 | - |
0.1420 | 812 | - | 1.3702 |
0.1434 | 820 | 3.6651 | - |
0.1452 | 830 | 3.7292 | - |
0.1469 | 840 | 3.7005 | - |
0.1487 | 850 | 3.6856 | - |
0.1504 | 860 | 3.631 | - |
0.1522 | 870 | 3.6459 | 1.3568 |
0.1539 | 880 | 3.6089 | - |
0.1556 | 890 | 3.6134 | - |
0.1574 | 900 | 3.6058 | - |
0.1591 | 910 | 3.6193 | - |
0.1609 | 920 | 3.627 | - |
0.1623 | 928 | - | 1.3072 |
0.1626 | 930 | 3.6202 | - |
0.1644 | 940 | 3.5891 | - |
0.1661 | 950 | 3.6185 | - |
0.1679 | 960 | 3.5984 | - |
0.1696 | 970 | 3.6258 | - |
0.1714 | 980 | 3.5625 | - |
0.1724 | 986 | - | 1.2930 |
0.1731 | 990 | 3.5441 | - |
0.1749 | 1000 | 3.5571 | - |
0.1766 | 1010 | 3.5486 | - |
0.1784 | 1020 | 3.5382 | - |
0.1801 | 1030 | 3.4519 | - |
0.1819 | 1040 | 3.5072 | - |
0.1826 | 1044 | - | 1.2823 |
0.1836 | 1050 | 3.5042 | - |
0.1854 | 1060 | 3.5005 | - |
0.1871 | 1070 | 3.455 | - |
0.1889 | 1080 | 3.4727 | - |
0.1906 | 1090 | 3.4473 | - |
0.1924 | 1100 | 3.4296 | - |
0.1927 | 1102 | - | 1.2696 |
0.1941 | 1110 | 3.449 | - |
0.1959 | 1120 | 3.4202 | - |
0.1976 | 1130 | 3.4236 | - |
0.1994 | 1140 | 3.414 | - |
0.2011 | 1150 | 3.4264 | - |
0.2029 | 1160 | 3.4005 | 1.2602 |
0.2046 | 1170 | 3.3801 | - |
0.2064 | 1180 | 3.3543 | - |
0.2081 | 1190 | 3.3866 | - |
0.2099 | 1200 | 3.3831 | - |
0.2116 | 1210 | 3.3691 | - |
0.2130 | 1218 | - | 1.2130 |
0.2134 | 1220 | 3.3607 | - |
0.2151 | 1230 | 3.3659 | - |
0.2169 | 1240 | 3.3538 | - |
0.2186 | 1250 | 3.3336 | - |
0.2204 | 1260 | 3.3403 | - |
0.2221 | 1270 | 3.3062 | - |
0.2232 | 1276 | - | 1.2237 |
0.2239 | 1280 | 3.3251 | - |
0.2256 | 1290 | 3.3475 | - |
0.2274 | 1300 | 3.2729 | - |
0.2291 | 1310 | 3.2872 | - |
0.2308 | 1320 | 3.2778 | - |
0.2326 | 1330 | 3.3147 | - |
0.2333 | 1334 | - | 1.2061 |
0.2343 | 1340 | 3.2477 | - |
0.2361 | 1350 | 3.2871 | - |
0.2378 | 1360 | 3.2458 | - |
0.2396 | 1370 | 3.279 | - |
0.2413 | 1380 | 3.2546 | - |
0.2431 | 1390 | 3.2342 | - |
0.2434 | 1392 | - | 1.1854 |
0.2448 | 1400 | 3.2488 | - |
0.2466 | 1410 | 3.2489 | - |
0.2483 | 1420 | 3.2368 | - |
0.2501 | 1430 | 3.2517 | - |
0.2518 | 1440 | 3.2568 | - |
0.2536 | 1450 | 3.21 | 1.1616 |
0.2553 | 1460 | 3.1891 | - |
0.2571 | 1470 | 3.1739 | - |
0.2588 | 1480 | 3.2004 | - |
0.2606 | 1490 | 3.1988 | - |
0.2623 | 1500 | 3.1892 | - |
0.2637 | 1508 | - | 1.1306 |
0.2641 | 1510 | 3.1967 | - |
0.2658 | 1520 | 3.1331 | - |
0.2676 | 1530 | 3.155 | - |
0.2693 | 1540 | 3.1564 | - |
0.2711 | 1550 | 3.1912 | - |
0.2728 | 1560 | 3.1005 | - |
0.2739 | 1566 | - | 1.1026 |
0.2746 | 1570 | 3.1166 | - |
0.2763 | 1580 | 3.1453 | - |
0.2781 | 1590 | 3.116 | - |
0.2798 | 1600 | 3.1465 | - |
0.2816 | 1610 | 3.1325 | - |
0.2833 | 1620 | 3.1022 | - |
0.2840 | 1624 | - | 1.1400 |
0.2851 | 1630 | 3.0703 | - |
0.2868 | 1640 | 3.0999 | - |
0.2886 | 1650 | 3.0957 | - |
0.2903 | 1660 | 3.0886 | - |
0.2921 | 1670 | 3.0471 | - |
0.2938 | 1680 | 3.0845 | - |
0.2942 | 1682 | - | 1.1045 |
0.2956 | 1690 | 3.0513 | - |
0.2973 | 1700 | 3.0621 | - |
0.2991 | 1710 | 3.0473 | - |
0.3008 | 1720 | 3.0486 | - |
0.3026 | 1730 | 3.0189 | - |
0.3043 | 1740 | 3.0675 | 1.1004 |
0.3061 | 1750 | 3.0592 | - |
0.3078 | 1760 | 3.0663 | - |
0.3095 | 1770 | 3.0879 | - |
0.3113 | 1780 | 3.0167 | - |
0.3130 | 1790 | 3.0356 | - |
0.3144 | 1798 | - | 1.0554 |
0.3148 | 1800 | 3.0294 | - |
0.3165 | 1810 | 2.9956 | - |
0.3183 | 1820 | 2.985 | - |
0.3200 | 1830 | 2.9824 | - |
0.3218 | 1840 | 2.9939 | - |
0.3235 | 1850 | 2.9979 | - |
0.3246 | 1856 | - | 1.0561 |
0.3253 | 1860 | 2.9935 | - |
0.3270 | 1870 | 3.0613 | - |
0.3288 | 1880 | 2.9742 | - |
0.3305 | 1890 | 2.9858 | - |
0.3323 | 1900 | 2.9446 | - |
0.3340 | 1910 | 2.9571 | - |
0.3347 | 1914 | - | 1.0333 |
0.3358 | 1920 | 2.9839 | - |
0.3375 | 1930 | 2.9865 | - |
0.3393 | 1940 | 2.9398 | - |
0.3410 | 1950 | 2.9504 | - |
0.3428 | 1960 | 2.9371 | - |
0.3445 | 1970 | 2.9222 | - |
0.3449 | 1972 | - | 1.0322 |
0.3463 | 1980 | 2.8907 | - |
0.3480 | 1990 | 2.9412 | - |
0.3498 | 2000 | 2.944 | - |
0.3515 | 2010 | 2.9168 | - |
0.3533 | 2020 | 2.9076 | - |
0.3550 | 2030 | 2.8967 | 1.0103 |
0.3568 | 2040 | 2.8569 | - |
0.3585 | 2050 | 2.8602 | - |
0.3603 | 2060 | 2.8984 | - |
0.3620 | 2070 | 2.8782 | - |
0.3638 | 2080 | 2.8649 | - |
0.3652 | 2088 | - | 1.0136 |
0.3655 | 2090 | 2.8388 | - |
0.3673 | 2100 | 2.8845 | - |
0.3690 | 2110 | 2.8749 | - |
0.3708 | 2120 | 2.8439 | - |
0.3725 | 2130 | 2.8693 | - |
0.3743 | 2140 | 2.8342 | - |
0.3753 | 2146 | - | 0.9949 |
0.3760 | 2150 | 2.8696 | - |
0.3778 | 2160 | 2.872 | - |
0.3795 | 2170 | 2.828 | - |
0.3813 | 2180 | 2.8338 | - |
0.3830 | 2190 | 2.8716 | - |
0.3847 | 2200 | 2.8798 | - |
0.3854 | 2204 | - | 1.0067 |
0.3865 | 2210 | 2.834 | - |
0.3882 | 2220 | 2.7885 | - |
0.3900 | 2230 | 2.8152 | - |
0.3917 | 2240 | 2.8214 | - |
0.3935 | 2250 | 2.8306 | - |
0.3952 | 2260 | 2.8164 | - |
0.3956 | 2262 | - | 0.9845 |
0.3970 | 2270 | 2.8338 | - |
0.3987 | 2280 | 2.8223 | - |
0.4005 | 2290 | 2.8183 | - |
0.4022 | 2300 | 2.7903 | - |
0.4040 | 2310 | 2.7772 | - |
0.4057 | 2320 | 2.7952 | 0.9900 |
0.4075 | 2330 | 2.7733 | - |
0.4092 | 2340 | 2.8096 | - |
0.4110 | 2350 | 2.771 | - |
0.4127 | 2360 | 2.8178 | - |
0.4145 | 2370 | 2.7539 | - |
0.4159 | 2378 | - | 0.9749 |
0.4162 | 2380 | 2.7488 | - |
0.4180 | 2390 | 2.7592 | - |
0.4197 | 2400 | 2.7385 | - |
0.4215 | 2410 | 2.7564 | - |
0.4232 | 2420 | 2.7573 | - |
0.4250 | 2430 | 2.7686 | - |
0.4260 | 2436 | - | 0.9509 |
0.4267 | 2440 | 2.7147 | - |
0.4285 | 2450 | 2.7375 | - |
0.4302 | 2460 | 2.6995 | - |
0.4320 | 2470 | 2.6888 | - |
0.4337 | 2480 | 2.7171 | - |
0.4355 | 2490 | 2.712 | - |
0.4362 | 2494 | - | 0.9311 |
0.4372 | 2500 | 2.729 | - |
0.4390 | 2510 | 2.6974 | - |
0.4407 | 2520 | 2.7056 | - |
0.4425 | 2530 | 2.7123 | - |
0.4442 | 2540 | 2.701 | - |
0.4460 | 2550 | 2.7211 | - |
0.4463 | 2552 | - | 0.9259 |
0.4477 | 2560 | 2.6974 | - |
0.4495 | 2570 | 2.6823 | - |
0.4512 | 2580 | 2.6968 | - |
0.4530 | 2590 | 2.7126 | - |
0.4547 | 2600 | 2.693 | - |
0.4565 | 2610 | 2.7164 | 0.9161 |
0.4582 | 2620 | 2.6558 | - |
0.4600 | 2630 | 2.6972 | - |
0.4617 | 2640 | 2.7116 | - |
0.4634 | 2650 | 2.6398 | - |
0.4652 | 2660 | 2.6645 | - |
0.4666 | 2668 | - | 0.8982 |
0.4669 | 2670 | 2.6646 | - |
0.4687 | 2680 | 2.6828 | - |
0.4704 | 2690 | 2.6502 | - |
0.4722 | 2700 | 2.6605 | - |
0.4739 | 2710 | 2.6224 | - |
0.4757 | 2720 | 2.6753 | - |
0.4767 | 2726 | - | 0.8941 |
0.4774 | 2730 | 2.6478 | - |
0.4792 | 2740 | 2.6688 | - |
0.4809 | 2750 | 2.6674 | - |
0.4827 | 2760 | 2.6132 | - |
0.4844 | 2770 | 2.6286 | - |
0.4862 | 2780 | 2.634 | - |
0.4869 | 2784 | - | 0.8756 |
0.4879 | 2790 | 2.6359 | - |
0.4897 | 2800 | 2.6242 | - |
0.4914 | 2810 | 2.6443 | - |
0.4932 | 2820 | 2.59 | - |
0.4949 | 2830 | 2.6166 | - |
0.4967 | 2840 | 2.6249 | - |
0.4970 | 2842 | - | 0.8802 |
0.4984 | 2850 | 2.6257 | - |
0.5002 | 2860 | 2.6286 | - |
0.5019 | 2870 | 2.5671 | - |
0.5037 | 2880 | 2.5959 | - |
0.5054 | 2890 | 2.5962 | - |
0.5072 | 2900 | 2.5521 | 0.8673 |
0.5089 | 2910 | 2.5833 | - |
0.5107 | 2920 | 2.6015 | - |
0.5124 | 2930 | 2.6446 | - |
0.5142 | 2940 | 2.5655 | - |
0.5159 | 2950 | 2.5802 | - |
0.5173 | 2958 | - | 0.8614 |
0.5177 | 2960 | 2.6124 | - |
0.5194 | 2970 | 2.5372 | - |
0.5212 | 2980 | 2.5108 | - |
0.5229 | 2990 | 2.578 | - |
0.5247 | 3000 | 2.5629 | - |
0.5264 | 3010 | 2.5691 | - |
0.5275 | 3016 | - | 0.8418 |
0.5282 | 3020 | 2.5313 | - |
0.5299 | 3030 | 2.5791 | - |
0.5317 | 3040 | 2.5216 | - |
0.5334 | 3050 | 2.5263 | - |
0.5352 | 3060 | 2.5213 | - |
0.5369 | 3070 | 2.5485 | - |
0.5376 | 3074 | - | 0.8546 |
0.5386 | 3080 | 2.5435 | - |
0.5404 | 3090 | 2.5599 | - |
0.5421 | 3100 | 2.5045 | - |
0.5439 | 3110 | 2.5055 | - |
0.5456 | 3120 | 2.54 | - |
0.5474 | 3130 | 2.5134 | - |
0.5477 | 3132 | - | 0.8515 |
0.5491 | 3140 | 2.5053 | - |
0.5509 | 3150 | 2.4578 | - |
0.5526 | 3160 | 2.517 | - |
0.5544 | 3170 | 2.5061 | - |
0.5561 | 3180 | 2.5262 | - |
0.5579 | 3190 | 2.5787 | 0.8376 |
0.5596 | 3200 | 2.4855 | - |
0.5614 | 3210 | 2.5058 | - |
0.5631 | 3220 | 2.5279 | - |
0.5649 | 3230 | 2.498 | - |
0.5666 | 3240 | 2.5045 | - |
0.5680 | 3248 | - | 0.8407 |
0.5684 | 3250 | 2.5129 | - |
0.5701 | 3260 | 2.517 | - |
0.5719 | 3270 | 2.4647 | - |
0.5736 | 3280 | 2.4642 | - |
0.5754 | 3290 | 2.4936 | - |
0.5771 | 3300 | 2.4862 | - |
0.5782 | 3306 | - | 0.8310 |
0.5789 | 3310 | 2.4805 | - |
0.5806 | 3320 | 2.4986 | - |
0.5824 | 3330 | 2.481 | - |
0.5841 | 3340 | 2.4747 | - |
0.5859 | 3350 | 2.4939 | - |
0.5876 | 3360 | 2.4691 | - |
0.5883 | 3364 | - | 0.8397 |
0.5894 | 3370 | 2.4798 | - |
0.5911 | 3380 | 2.4439 | - |
0.5929 | 3390 | 2.4849 | - |
0.5946 | 3400 | 2.4653 | - |
0.5964 | 3410 | 2.4795 | - |
0.5981 | 3420 | 2.4681 | - |
0.5985 | 3422 | - | 0.8265 |
0.5999 | 3430 | 2.4671 | - |
0.6016 | 3440 | 2.4579 | - |
0.6034 | 3450 | 2.4319 | - |
0.6051 | 3460 | 2.4235 | - |
0.6069 | 3470 | 2.4447 | - |
0.6086 | 3480 | 2.456 | 0.8104 |
0.6104 | 3490 | 2.4107 | - |
0.6121 | 3500 | 2.49 | - |
0.6139 | 3510 | 2.4511 | - |
0.6156 | 3520 | 2.4446 | - |
0.6173 | 3530 | 2.4159 | - |
0.6187 | 3538 | - | 0.8086 |
0.6191 | 3540 | 2.4135 | - |
0.6208 | 3550 | 2.4147 | - |
0.6226 | 3560 | 2.4458 | - |
0.6243 | 3570 | 2.4207 | - |
0.6261 | 3580 | 2.4333 | - |
0.6278 | 3590 | 2.3931 | - |
0.6289 | 3596 | - | 0.8036 |
0.6296 | 3600 | 2.4695 | - |
0.6313 | 3610 | 2.4285 | - |
0.6331 | 3620 | 2.4066 | - |
0.6348 | 3630 | 2.414 | - |
0.6366 | 3640 | 2.4229 | - |
0.6383 | 3650 | 2.3916 | - |
0.6390 | 3654 | - | 0.7960 |
0.6401 | 3660 | 2.4376 | - |
0.6418 | 3670 | 2.4196 | - |
0.6436 | 3680 | 2.4132 | - |
0.6453 | 3690 | 2.4016 | - |
0.6471 | 3700 | 2.3749 | - |
0.6488 | 3710 | 2.3963 | - |
0.6492 | 3712 | - | 0.7895 |
0.6506 | 3720 | 2.4223 | - |
0.6523 | 3730 | 2.3787 | - |
0.6541 | 3740 | 2.368 | - |
0.6558 | 3750 | 2.3526 | - |
0.6576 | 3760 | 2.3883 | - |
0.6593 | 3770 | 2.4286 | 0.7897 |
0.6611 | 3780 | 2.366 | - |
0.6628 | 3790 | 2.3914 | - |
0.6646 | 3800 | 2.416 | - |
0.6663 | 3810 | 2.3731 | - |
0.6681 | 3820 | 2.4097 | - |
0.6695 | 3828 | - | 0.7782 |
0.6698 | 3830 | 2.374 | - |
0.6716 | 3840 | 2.3591 | - |
0.6733 | 3850 | 2.384 | - |
0.6751 | 3860 | 2.398 | - |
0.6768 | 3870 | 2.3712 | - |
0.6786 | 3880 | 2.3936 | - |
0.6796 | 3886 | - | 0.7725 |
0.6803 | 3890 | 2.3895 | - |
0.6821 | 3900 | 2.359 | - |
0.6838 | 3910 | 2.3901 | - |
0.6856 | 3920 | 2.4 | - |
0.6873 | 3930 | 2.3628 | - |
0.6891 | 3940 | 2.3732 | - |
0.6898 | 3944 | - | 0.7658 |
0.6908 | 3950 | 2.3929 | - |
0.6925 | 3960 | 2.3792 | - |
0.6943 | 3970 | 2.3496 | - |
0.6960 | 3980 | 2.3242 | - |
0.6978 | 3990 | 2.3471 | - |
0.6995 | 4000 | 2.3503 | - |
0.6999 | 4002 | - | 0.7617 |
0.7013 | 4010 | 2.3693 | - |
0.7030 | 4020 | 2.3608 | - |
0.7048 | 4030 | 2.3419 | - |
0.7065 | 4040 | 2.3577 | - |
0.7083 | 4050 | 2.3403 | - |
0.7100 | 4060 | 2.3491 | 0.7549 |
0.7118 | 4070 | 2.3175 | - |
0.7135 | 4080 | 2.3513 | - |
0.7153 | 4090 | 2.3767 | - |
0.7170 | 4100 | 2.371 | - |
0.7188 | 4110 | 2.3103 | - |
0.7202 | 4118 | - | 0.7585 |
0.7205 | 4120 | 2.3048 | - |
0.7223 | 4130 | 2.3406 | - |
0.7240 | 4140 | 2.3551 | - |
0.7258 | 4150 | 2.3309 | - |
0.7275 | 4160 | 2.3565 | - |
0.7293 | 4170 | 2.3111 | - |
0.7303 | 4176 | - | 0.7527 |
0.7310 | 4180 | 2.2925 | - |
0.7328 | 4190 | 2.281 | - |
0.7345 | 4200 | 2.3131 | - |
0.7363 | 4210 | 2.3568 | - |
0.7380 | 4220 | 2.3645 | - |
0.7398 | 4230 | 2.3283 | - |
0.7405 | 4234 | - | 0.7497 |
0.7415 | 4240 | 2.3098 | - |
0.7433 | 4250 | 2.3136 | - |
0.7450 | 4260 | 2.3141 | - |
0.7468 | 4270 | 2.2717 | - |
0.7485 | 4280 | 2.325 | - |
0.7503 | 4290 | 2.3358 | - |
0.7506 | 4292 | - | 0.7449 |
0.7520 | 4300 | 2.296 | - |
0.7538 | 4310 | 2.3211 | - |
0.7555 | 4320 | 2.3035 | - |
0.7573 | 4330 | 2.3114 | - |
0.7590 | 4340 | 2.3076 | - |
0.7608 | 4350 | 2.334 | 0.7416 |
0.7625 | 4360 | 2.2805 | - |
0.7643 | 4370 | 2.3302 | - |
0.7660 | 4380 | 2.2753 | - |
0.7678 | 4390 | 2.3084 | - |
0.7695 | 4400 | 2.308 | - |
0.7709 | 4408 | - | 0.7463 |
0.7712 | 4410 | 2.2909 | - |
0.7730 | 4420 | 2.2796 | - |
0.7747 | 4430 | 2.2868 | - |
0.7765 | 4440 | 2.3021 | - |
0.7782 | 4450 | 2.2977 | - |
0.7800 | 4460 | 2.2885 | - |
0.7810 | 4466 | - | 0.7391 |
0.7817 | 4470 | 2.2967 | - |
0.7835 | 4480 | 2.2774 | - |
0.7852 | 4490 | 2.3178 | - |
0.7870 | 4500 | 2.2785 | - |
0.7887 | 4510 | 2.2493 | - |
0.7905 | 4520 | 2.2866 | - |
0.7912 | 4524 | - | 0.7325 |
0.7922 | 4530 | 2.2632 | - |
0.7940 | 4540 | 2.289 | - |
0.7957 | 4550 | 2.2782 | - |
0.7975 | 4560 | 2.2607 | - |
0.7992 | 4570 | 2.2914 | - |
0.8010 | 4580 | 2.2593 | - |
0.8013 | 4582 | - | 0.7318 |
0.8027 | 4590 | 2.3077 | - |
0.8045 | 4600 | 2.2793 | - |
0.8062 | 4610 | 2.3051 | - |
0.8080 | 4620 | 2.2914 | - |
0.8097 | 4630 | 2.2646 | - |
0.8115 | 4640 | 2.2574 | 0.7308 |
0.8132 | 4650 | 2.2654 | - |
0.8150 | 4660 | 2.235 | - |
0.8167 | 4670 | 2.258 | - |
0.8185 | 4680 | 2.2935 | - |
0.8202 | 4690 | 2.281 | - |
0.8216 | 4698 | - | 0.7281 |
0.8220 | 4700 | 2.295 | - |
0.8237 | 4710 | 2.3095 | - |
0.8255 | 4720 | 2.2516 | - |
0.8272 | 4730 | 2.2292 | - |
0.8290 | 4740 | 2.2635 | - |
0.8307 | 4750 | 2.2522 | - |
0.8318 | 4756 | - | 0.7330 |
0.8325 | 4760 | 2.248 | - |
0.8342 | 4770 | 2.3082 | - |
0.8360 | 4780 | 2.2447 | - |
0.8377 | 4790 | 2.2596 | - |
0.8395 | 4800 | 2.2747 | - |
0.8412 | 4810 | 2.2343 | - |
0.8419 | 4814 | - | 0.7319 |
0.8430 | 4820 | 2.2521 | - |
0.8447 | 4830 | 2.2642 | - |
0.8464 | 4840 | 2.2492 | - |
0.8482 | 4850 | 2.2788 | - |
0.8499 | 4860 | 2.2925 | - |
0.8517 | 4870 | 2.2491 | - |
0.8520 | 4872 | - | 0.7304 |
0.8534 | 4880 | 2.2666 | - |
0.8552 | 4890 | 2.2261 | - |
0.8569 | 4900 | 2.2504 | - |
0.8587 | 4910 | 2.2567 | - |
0.8604 | 4920 | 2.2813 | - |
0.8622 | 4930 | 2.244 | 0.7277 |
0.8639 | 4940 | 2.2645 | - |
0.8657 | 4950 | 2.228 | - |
0.8674 | 4960 | 2.2322 | - |
0.8692 | 4970 | 2.2547 | - |
0.8709 | 4980 | 2.2722 | - |
0.8723 | 4988 | - | 0.7272 |
0.8727 | 4990 | 2.227 | - |
0.8744 | 5000 | 2.2407 | - |
0.8762 | 5010 | 2.2269 | - |
0.8779 | 5020 | 2.2428 | - |
0.8797 | 5030 | 2.2448 | - |
0.8814 | 5040 | 2.2562 | - |
0.8825 | 5046 | - | 0.7256 |
0.8832 | 5050 | 2.2364 | - |
0.8849 | 5060 | 2.2445 | - |
0.8867 | 5070 | 2.2409 | - |
0.8884 | 5080 | 2.2261 | - |
0.8902 | 5090 | 2.2613 | - |
0.8919 | 5100 | 2.2718 | - |
0.8926 | 5104 | - | 0.7233 |
0.8937 | 5110 | 2.2544 | - |
0.8954 | 5120 | 2.2276 | - |
0.8972 | 5130 | 2.2385 | - |
0.8989 | 5140 | 2.2401 | - |
0.9007 | 5150 | 2.2769 | - |
0.9024 | 5160 | 2.2399 | - |
0.9028 | 5162 | - | 0.7231 |
0.9042 | 5170 | 2.2205 | - |
0.9059 | 5180 | 2.2303 | - |
0.9077 | 5190 | 2.231 | - |
0.9094 | 5200 | 2.2356 | - |
0.9112 | 5210 | 2.2386 | - |
0.9129 | 5220 | 2.2233 | 0.7233 |
0.9147 | 5230 | 2.2509 | - |
0.9164 | 5240 | 2.2201 | - |
0.9182 | 5250 | 2.2189 | - |
0.9199 | 5260 | 2.1992 | - |
0.9217 | 5270 | 2.2362 | - |
0.9231 | 5278 | - | 0.7221 |
0.9234 | 5280 | 2.2293 | - |
0.9251 | 5290 | 2.2302 | - |
0.9269 | 5300 | 2.2216 | - |
0.9286 | 5310 | 2.2191 | - |
0.9304 | 5320 | 2.2504 | - |
0.9321 | 5330 | 2.2447 | - |
0.9332 | 5336 | - | 0.7221 |
0.9339 | 5340 | 2.2326 | - |
0.9356 | 5350 | 2.2315 | - |
0.9374 | 5360 | 2.244 | - |
0.9391 | 5370 | 2.2369 | - |
0.9409 | 5380 | 2.2312 | - |
0.9426 | 5390 | 2.2739 | - |
0.9433 | 5394 | - | 0.7206 |
0.9444 | 5400 | 2.2598 | - |
0.9461 | 5410 | 2.2319 | - |
0.9479 | 5420 | 2.2312 | - |
0.9496 | 5430 | 2.2592 | - |
0.9514 | 5440 | 2.2503 | - |
0.9531 | 5450 | 2.232 | - |
0.9535 | 5452 | - | 0.7208 |
0.9549 | 5460 | 2.2341 | - |
0.9566 | 5470 | 2.2564 | - |
0.9584 | 5480 | 2.2087 | - |
0.9601 | 5490 | 2.257 | - |
0.9619 | 5500 | 2.2524 | - |
0.9636 | 5510 | 2.253 | 0.7204 |
0.9654 | 5520 | 2.2424 | - |
0.9671 | 5530 | 2.2459 | - |
0.9689 | 5540 | 2.2387 | - |
0.9706 | 5550 | 2.2482 | - |
0.9724 | 5560 | 2.2156 | - |
0.9738 | 5568 | - | 0.7200 |
0.9741 | 5570 | 2.2343 | - |
0.9759 | 5580 | 2.2426 | - |
0.9776 | 5590 | 2.2154 | - |
0.9794 | 5600 | 2.2365 | - |
0.9811 | 5610 | 2.275 | - |
0.9829 | 5620 | 2.2689 | - |
0.9839 | 5626 | - | 0.7200 |
0.9846 | 5630 | 2.2356 | - |
0.9864 | 5640 | 2.2517 | - |
0.9881 | 5650 | 2.2436 | - |
0.9899 | 5660 | 2.2229 | - |
0.9916 | 5670 | 2.2617 | - |
0.9934 | 5680 | 2.2359 | - |
0.9941 | 5684 | - | 0.7201 |
0.9951 | 5690 | 2.2444 | - |
0.9969 | 5700 | 2.2505 | - |
0.9986 | 5710 | 2.2713 | - |
Framework Versions
- Python: 3.11.8
- Sentence Transformers: 3.1.1
- Transformers: 4.45.1
- PyTorch: 2.4.0+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.20.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MaskedCachedMultipleNegativesRankingLoss
@misc{gao2021scaling,
title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
year={2021},
eprint={2101.06983},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for hanwenzhu/all-distilroberta-v1-lr2e-4-bs1024-nneg3-mlbs-mar03
Base model
sentence-transformers/all-distilroberta-v1