metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: distilbert-base-uncased-english-cefr-lexical-evaluation-ep-v2
results: []
distilbert-base-uncased-english-cefr-lexical-evaluation-ep-v2
This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.3256
- Accuracy: 0.6049
- F1: 0.6047
- Precision: 0.6054
- Recall: 0.6049
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
1.299 | 1.0 | 346 | 1.3450 | 0.5025 | 0.4894 | 0.5191 | 0.5025 |
0.9942 | 2.0 | 692 | 1.2870 | 0.5489 | 0.5550 | 0.5850 | 0.5489 |
0.3649 | 3.0 | 1038 | 1.5221 | 0.5735 | 0.5742 | 0.5753 | 0.5735 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3