TCD-SD15-LoRA / README.md
h1t's picture
Upload folder using huggingface_hub
449a99f verified
---
tags:
- text-to-image
- stable-diffusion
- lora
- diffusers
base_model: runwayml/stable-diffusion-v1-5
license: mit
library_name: diffusers
---
# Model description
Official TCD LoRA for Stable Diffusion v1.5 of the paper [Trajectory Consistency Distillation](https://arxiv.org/abs/2402.19159).
For more usage please found at [Project Page](https://mhh0318.github.io/tcd/)
Here is a simple example:
`
```python
import torch
from diffusers import StableDiffusionPipeline, TCDScheduler
device = "cuda"
base_model_id = "runwayml/stable-diffusion-v1-5"
tcd_lora_id = "h1t/TCD-SD15-LoRA"
pipe = StableDiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16, variant="fp16").to(device)
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
pipe.load_lora_weights(tcd_lora_id)
pipe.fuse_lora()
prompt = "Beautiful woman, bubblegum pink, lemon yellow, minty blue, futuristic, high-detail, epic composition, watercolor."
image = pipe(
prompt=prompt,
num_inference_steps=4,
guidance_scale=0,
# Eta (referred to as `gamma` in the paper) is used to control the stochasticity in every step.
# A value of 0.3 often yields good results.
# We recommend using a higher eta when increasing the number of inference steps.
eta=0.3,
generator=torch.Generator(device=device).manual_seed(42),
).images[0]
```
![](assets/result.png)