tags: | |
- text-to-image | |
- stable-diffusion | |
- lora | |
- diffusers | |
base_model: runwayml/stable-diffusion-v1-5 | |
license: mit | |
library_name: diffusers | |
# Model description | |
Official TCD LoRA for Stable Diffusion v1.5 of the paper [Trajectory Consistency Distillation](https://arxiv.org/abs/2402.19159). | |
For more usage please found at [Project Page](https://mhh0318.github.io/tcd/) | |
Here is a simple example: | |
` | |
```python | |
import torch | |
from diffusers import StableDiffusionPipeline, TCDScheduler | |
device = "cuda" | |
base_model_id = "runwayml/stable-diffusion-v1-5" | |
tcd_lora_id = "h1t/TCD-SD15-LoRA" | |
pipe = StableDiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16, variant="fp16").to(device) | |
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config) | |
pipe.load_lora_weights(tcd_lora_id) | |
pipe.fuse_lora() | |
prompt = "Beautiful woman, bubblegum pink, lemon yellow, minty blue, futuristic, high-detail, epic composition, watercolor." | |
image = pipe( | |
prompt=prompt, | |
num_inference_steps=4, | |
guidance_scale=0, | |
# Eta (referred to as `gamma` in the paper) is used to control the stochasticity in every step. | |
# A value of 0.3 often yields good results. | |
# We recommend using a higher eta when increasing the number of inference steps. | |
eta=0.3, | |
generator=torch.Generator(device=device).manual_seed(42), | |
).images[0] | |
``` | |
![](assets/result.png) |