See axolotl config
axolotl version: 0.8.0.dev0
adapter: lora
base_model: deepseek-ai/DeepSeek-R1-Distill-Llama-8B
bf16: auto
datasets:
- path: train.json
type: completion
val_set_size: 0
sequence_len: 4096
sample_packing: true
gradient_checkpointing: true
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 1
learning_rate: 2e-5
lr_scheduler: cosine
optimizer: paged_adamw_8bit
output_dir: ./outputs/mymodel
load_in_8bit: false
train_on_inputs: false
save_safetensors: true
save_only_model: true
flash_attention: true
logging_steps: 10
lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
- q_proj
- v_proj
- k_proj
- o_proj
- gate_proj
- down_proj
- up_proj
outputs/mymodel
This model is a fine-tuned version of deepseek-ai/DeepSeek-R1-Distill-Llama-8B on the train.json dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 16
- num_epochs: 1.0
Training results
Framework versions
- PEFT 0.14.0
- Transformers 4.49.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 15
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for h0m4m/sympter-1
Base model
deepseek-ai/DeepSeek-R1-Distill-Llama-8B