gzzyyxy's picture
Upload folder using huggingface_hub
c1a7f73 verified
import os
import torch
import math
import pickle
import numpy as np
from torch import nn
from typing import Dict, Sequence
from scipy.interpolate import interp1d
from scipy.spatial.distance import euclidean
from dev.utils.func import wrap_angle
SHIFT = 5
AGENT_SHAPE = {
'vehicle': [4.3, 1.8, 1.],
'pedstrain': [0.5, 0.5, 1.],
'cyclist': [1.9, 0.5, 1.],
}
AGENT_TYPE = ['veh', 'ped', 'cyc', 'seed']
AGENT_STATE = ['invalid', 'valid', 'enter', 'exit']
@torch.no_grad()
def cal_polygon_contour(pos, head, width_length) -> torch.Tensor: # [n_agent, n_step, n_target, 4, 2]
x, y = pos[..., 0], pos[..., 1] # [n_agent, n_step, n_target]
width, length = width_length[..., 0], width_length[..., 1] # [n_agent, 1, 1]
half_cos = 0.5 * head.cos() # [n_agent, n_step, n_target]
half_sin = 0.5 * head.sin() # [n_agent, n_step, n_target]
length_cos = length * half_cos # [n_agent, n_step, n_target]
length_sin = length * half_sin # [n_agent, n_step, n_target]
width_cos = width * half_cos # [n_agent, n_step, n_target]
width_sin = width * half_sin # [n_agent, n_step, n_target]
left_front_x = x + length_cos - width_sin
left_front_y = y + length_sin + width_cos
left_front = torch.stack((left_front_x, left_front_y), dim=-1)
right_front_x = x + length_cos + width_sin
right_front_y = y + length_sin - width_cos
right_front = torch.stack((right_front_x, right_front_y), dim=-1)
right_back_x = x - length_cos + width_sin
right_back_y = y - length_sin - width_cos
right_back = torch.stack((right_back_x, right_back_y), dim=-1)
left_back_x = x - length_cos - width_sin
left_back_y = y - length_sin + width_cos
left_back = torch.stack((left_back_x, left_back_y), dim=-1)
polygon_contour = torch.stack(
(left_front, right_front, right_back, left_back), dim=-2
)
return polygon_contour
def interplating_polyline(polylines, heading, distance=0.5, split_distace=5):
# Calculate the cumulative distance along the path, up-sample the polyline to 0.5 meter
dist_along_path_list = [[0]]
polylines_list = [[polylines[0]]]
for i in range(1, polylines.shape[0]):
euclidean_dist = euclidean(polylines[i, :2], polylines[i - 1, :2])
heading_diff = min(abs(max(heading[i], heading[i - 1]) - min(heading[1], heading[i - 1])),
abs(max(heading[i], heading[i - 1]) - min(heading[1], heading[i - 1]) + math.pi))
if heading_diff > math.pi / 4 and euclidean_dist > 3:
dist_along_path_list.append([0])
polylines_list.append([polylines[i]])
elif heading_diff > math.pi / 8 and euclidean_dist > 3:
dist_along_path_list.append([0])
polylines_list.append([polylines[i]])
elif heading_diff > 0.1 and euclidean_dist > 3:
dist_along_path_list.append([0])
polylines_list.append([polylines[i]])
elif euclidean_dist > 10:
dist_along_path_list.append([0])
polylines_list.append([polylines[i]])
else:
dist_along_path_list[-1].append(dist_along_path_list[-1][-1] + euclidean_dist)
polylines_list[-1].append(polylines[i])
# plt.plot(polylines[:, 0], polylines[:, 1])
# plt.savefig('tmp.jpg')
new_x_list = []
new_y_list = []
multi_polylines_list = []
for idx in range(len(dist_along_path_list)):
if len(dist_along_path_list[idx]) < 2:
continue
dist_along_path = np.array(dist_along_path_list[idx])
polylines_cur = np.array(polylines_list[idx])
# Create interpolation functions for x and y coordinates
fx = interp1d(dist_along_path, polylines_cur[:, 0])
fy = interp1d(dist_along_path, polylines_cur[:, 1])
# fyaw = interp1d(dist_along_path, heading)
# Create an array of distances at which to interpolate
new_dist_along_path = np.arange(0, dist_along_path[-1], distance)
new_dist_along_path = np.concatenate([new_dist_along_path, dist_along_path[[-1]]])
# Use the interpolation functions to generate new x and y coordinates
new_x = fx(new_dist_along_path)
new_y = fy(new_dist_along_path)
# new_yaw = fyaw(new_dist_along_path)
new_x_list.append(new_x)
new_y_list.append(new_y)
# Combine the new x and y coordinates into a single array
new_polylines = np.vstack((new_x, new_y)).T
polyline_size = int(split_distace / distance)
if new_polylines.shape[0] >= (polyline_size + 1):
padding_size = (new_polylines.shape[0] - (polyline_size + 1)) % polyline_size
final_index = (new_polylines.shape[0] - (polyline_size + 1)) // polyline_size + 1
else:
padding_size = new_polylines.shape[0]
final_index = 0
multi_polylines = None
new_polylines = torch.from_numpy(new_polylines)
new_heading = torch.atan2(new_polylines[1:, 1] - new_polylines[:-1, 1],
new_polylines[1:, 0] - new_polylines[:-1, 0])
new_heading = torch.cat([new_heading, new_heading[-1:]], -1)[..., None]
new_polylines = torch.cat([new_polylines, new_heading], -1)
if new_polylines.shape[0] >= (polyline_size + 1):
multi_polylines = new_polylines.unfold(dimension=0, size=polyline_size + 1, step=polyline_size)
multi_polylines = multi_polylines.transpose(1, 2)
multi_polylines = multi_polylines[:, ::5, :]
if padding_size >= 3:
last_polyline = new_polylines[final_index * polyline_size:]
last_polyline = last_polyline[torch.linspace(0, last_polyline.shape[0] - 1, steps=3).long()]
if multi_polylines is not None:
multi_polylines = torch.cat([multi_polylines, last_polyline.unsqueeze(0)], dim=0)
else:
multi_polylines = last_polyline.unsqueeze(0)
if multi_polylines is None:
continue
multi_polylines_list.append(multi_polylines)
if len(multi_polylines_list) > 0:
multi_polylines_list = torch.cat(multi_polylines_list, dim=0)
else:
multi_polylines_list = None
return multi_polylines_list
# def interplating_polyline(polylines, heading, distance=0.5, split_distance=5, device='cpu'):
# dist_along_path_list = [[0]]
# polylines_list = [[polylines[0]]]
# for i in range(1, polylines.shape[0]):
# euclidean_dist = torch.norm(polylines[i, :2] - polylines[i - 1, :2])
# heading_diff = min(abs(max(heading[i], heading[i - 1]) - min(heading[1], heading[i - 1])),
# abs(max(heading[i], heading[i - 1]) - min(heading[1], heading[i - 1]) + torch.pi))
# if heading_diff > torch.pi / 4 and euclidean_dist > 3:
# dist_along_path_list.append([0])
# polylines_list.append([polylines[i]])
# elif heading_diff > torch.pi / 8 and euclidean_dist > 3:
# dist_along_path_list.append([0])
# polylines_list.append([polylines[i]])
# elif heading_diff > 0.1 and euclidean_dist > 3:
# dist_along_path_list.append([0])
# polylines_list.append([polylines[i]])
# elif euclidean_dist > 10:
# dist_along_path_list.append([0])
# polylines_list.append([polylines[i]])
# else:
# dist_along_path_list[-1].append(dist_along_path_list[-1][-1] + euclidean_dist)
# polylines_list[-1].append(polylines[i])
# new_x_list = []
# new_y_list = []
# multi_polylines_list = []
# for idx in range(len(dist_along_path_list)):
# if len(dist_along_path_list[idx]) < 2:
# continue
# dist_along_path = torch.tensor(dist_along_path_list[idx], device=device)
# polylines_cur = torch.stack(polylines_list[idx])
# new_dist_along_path = torch.arange(0, dist_along_path[-1], distance)
# new_dist_along_path = torch.cat([new_dist_along_path, dist_along_path[[-1]]])
# new_x = torch.interp(new_dist_along_path, dist_along_path, polylines_cur[:, 0])
# new_y = torch.interp(new_dist_along_path, dist_along_path, polylines_cur[:, 1])
# new_x_list.append(new_x)
# new_y_list.append(new_y)
# new_polylines = torch.stack((new_x, new_y), dim=-1)
# polyline_size = int(split_distance / distance)
# if new_polylines.shape[0] >= (polyline_size + 1):
# padding_size = (new_polylines.shape[0] - (polyline_size + 1)) % polyline_size
# final_index = (new_polylines.shape[0] - (polyline_size + 1)) // polyline_size + 1
# else:
# padding_size = new_polylines.shape[0]
# final_index = 0
# multi_polylines = None
# new_heading = torch.atan2(new_polylines[1:, 1] - new_polylines[:-1, 1],
# new_polylines[1:, 0] - new_polylines[:-1, 0])
# new_heading = torch.cat([new_heading, new_heading[-1:]], -1)[..., None]
# new_polylines = torch.cat([new_polylines, new_heading], -1)
# if new_polylines.shape[0] >= (polyline_size + 1):
# multi_polylines = new_polylines.unfold(dimension=0, size=polyline_size + 1, step=polyline_size)
# multi_polylines = multi_polylines.transpose(1, 2)
# multi_polylines = multi_polylines[:, ::5, :]
# if padding_size >= 3:
# last_polyline = new_polylines[final_index * polyline_size:]
# last_polyline = last_polyline[torch.linspace(0, last_polyline.shape[0] - 1, steps=3).long()]
# if multi_polylines is not None:
# multi_polylines = torch.cat([multi_polylines, last_polyline.unsqueeze(0)], dim=0)
# else:
# multi_polylines = last_polyline.unsqueeze(0)
# if multi_polylines is None:
# continue
# multi_polylines_list.append(multi_polylines)
# if len(multi_polylines_list) > 0:
# multi_polylines_list = torch.cat(multi_polylines_list, dim=0)
# else:
# multi_polylines_list = None
# return multi_polylines_list
def average_distance_vectorized(point_set1, centroids):
dists = np.sqrt(np.sum((point_set1[:, None, :, :] - centroids[None, :, :, :]) ** 2, axis=-1))
return np.mean(dists, axis=2)
def assign_clusters(sub_X, centroids):
distances = average_distance_vectorized(sub_X, centroids)
return np.argmin(distances, axis=1)
class TokenProcessor(nn.Module):
def __init__(self, token_size,
training: bool=False,
predict_motion: bool=False,
predict_state: bool=False,
predict_map: bool=False,
state_token: Dict[str, int]=None, **kwargs):
super().__init__()
module_dir = os.path.dirname(os.path.dirname(__file__))
self.agent_token_path = os.path.join(module_dir, f'tokens/agent_vocab_555_s2.pkl')
self.map_token_traj_path = os.path.join(module_dir, 'tokens/map_traj_token5.pkl')
assert os.path.exists(self.agent_token_path), f"File {self.agent_token_path} not found."
assert os.path.exists(self.map_token_traj_path), f"File {self.map_token_traj_path} not found."
self.training = training
self.token_size = token_size
self.disable_invalid = not predict_state
self.predict_motion = predict_motion
self.predict_state = predict_state
self.predict_map = predict_map
# define new special tokens
self.bos_token_index = token_size
self.eos_token_index = token_size + 1
self.invalid_token_index = token_size + 2
self.special_token_index = []
self._init_token()
# define agent states
self.invalid_state = int(state_token['invalid'])
self.valid_state = int(state_token['valid'])
self.enter_state = int(state_token['enter'])
self.exit_state = int(state_token['exit'])
self.pl2seed_radius = kwargs.get('pl2seed_radius', None)
self.noise = False
self.disturb = False
self.shift = 5
self.training = False
self.current_step = 10
# debugging
self.debug_data = None
def forward(self, data):
"""
Each pkl data represents a extracted scenario from raw tfrecord data
"""
data['agent']['av_index'] = data['agent']['av_idx']
data = self._tokenize_agent(data)
# data = self._tokenize_map(data)
del data['city']
if 'polygon_is_intersection' in data['map_polygon']:
del data['map_polygon']['polygon_is_intersection']
if 'route_type' in data['map_polygon']:
del data['map_polygon']['route_type']
av_index = int(data['agent']['av_idx'])
data['ego_pos'] = data['agent']['token_pos'][[av_index]]
data['ego_heading'] = data['agent']['token_heading'][[av_index]]
return data
def _init_token(self):
agent_token_data = pickle.load(open(self.agent_token_path, 'rb'))
for agent_type, token in agent_token_data['token_all'].items():
token = torch.tensor(token, dtype=torch.float32)
self.register_buffer(f'agent_token_all_{agent_type}', token, persistent=False) # [n_token, 6, 4, 2]
map_token_traj = pickle.load(open(self.map_token_traj_path, 'rb'))['traj_src']
map_token_traj = torch.tensor(map_token_traj, dtype=torch.float32)
self.register_buffer('map_token_traj_src', map_token_traj, persistent=False) # [n_token, 11 * 2]
# self.trajectory_token = agent_token_data['token'] # (token_size, 4, 2)
# self.trajectory_token_all = agent_token_data['token_all'] # (token_size, shift + 1, 4, 2)
# self.map_token = {'traj_src': map_token_traj['traj_src']}
@staticmethod
def clean_heading(valid: torch.Tensor, heading: torch.Tensor) -> torch.Tensor:
valid_pairs = valid[:, :-1] & valid[:, 1:]
for i in range(heading.shape[1] - 1):
heading_diff = torch.abs(wrap_angle(heading[:, i] - heading[:, i + 1]))
change_needed = (heading_diff > 1.5) & valid_pairs[:, i]
heading[:, i + 1][change_needed] = heading[:, i][change_needed]
return heading
def _extrapolate_agent_to_prev_token_step(self, valid, pos, heading, vel) -> Sequence[torch.Tensor]:
# [n_agent], max will give the first True step
first_valid_step = torch.max(valid, dim=1).indices
for i, t in enumerate(first_valid_step): # extrapolate to previous 5th step.
n_step_to_extrapolate = t % self.shift
if (t == self.current_step) and (not valid[i, self.current_step - self.shift]):
# such that at least one token is valid in the history.
n_step_to_extrapolate = self.shift
if n_step_to_extrapolate > 0:
vel[i, t - n_step_to_extrapolate : t] = vel[i, t]
valid[i, t - n_step_to_extrapolate : t] = True
heading[i, t - n_step_to_extrapolate : t] = heading[i, t]
for j in range(n_step_to_extrapolate):
pos[i, t - j - 1] = pos[i, t - j] - vel[i, t] * 0.1
return valid, pos, heading, vel
def _get_agent_shape(self, agent_type_masks: dict) -> torch.Tensor:
agent_shape = 0.
for type, type_mask in agent_type_masks.items():
if type == 'veh': width = 2.; length = 4.8
if type == 'ped': width = 1.; length = 2.
if type == 'cyc': width = 1.; length = 1.
agent_shape += torch.stack([width * type_mask, length * type_mask], dim=-1)
return agent_shape
def _get_token_traj_all(self, agent_type_masks: dict) -> torch.Tensor:
token_traj_all = 0.
for type, type_mask in agent_type_masks.items():
token_traj_all += type_mask[:, None, None, None, None] * (
getattr(self, f'agent_token_all_{type}').unsqueeze(0)
)
return token_traj_all
def _tokenize_agent(self, data):
# get raw data
valid_mask = data['agent']['valid_mask'] # [n_agent, n_step]
agent_heading = data['agent']['heading'] # [n_agent, n_step]
agent_pos = data['agent']['position'][..., :2].contiguous() # [n_agent, n_step, 2]
agent_vel = data['agent']['velocity'] # [n_agent, n_step, 2]
agent_type = data['agent']['type']
agent_category = data['agent']['category']
n_agent, n_all_step = valid_mask.shape
agent_type_masks = {
"veh": agent_type == 0,
"ped": agent_type == 1,
"cyc": agent_type == 2,
}
agent_heading = self.clean_heading(valid_mask, agent_heading)
agent_shape = self._get_agent_shape(agent_type_masks)
token_traj_all = self._get_token_traj_all(agent_type_masks)
valid_mask, agent_pos, agent_heading, agent_vel = self._extrapolate_agent_to_prev_token_step(
valid_mask, agent_pos, agent_heading, agent_vel
)
token_traj = token_traj_all[:, :, -1, ...]
data['agent']['token_traj_all'] = token_traj_all # [n_agent, n_token, 6, 4, 2]
data['agent']['token_traj'] = token_traj # [n_agent, n_token, 4, 2]
valid_mask_shift = valid_mask.unfold(1, self.shift + 1, self.shift)
token_valid_mask = valid_mask_shift[:, :, 0] * valid_mask_shift[:, :, -1]
# vehicle_mask = agent_type == 0
# cyclist_mask = agent_type == 2
# ped_mask = agent_type == 1
# veh_pos = agent_pos[vehicle_mask, :, :]
# veh_valid_mask = valid_mask[vehicle_mask, :]
# cyc_pos = agent_pos[cyclist_mask, :, :]
# cyc_valid_mask = valid_mask[cyclist_mask, :]
# ped_pos = agent_pos[ped_mask, :, :]
# ped_valid_mask = valid_mask[ped_mask, :]
# index: [n_agent, n_step] contour: [n_agent, n_step, 4, 2]
token_index, token_contour, token_all = self._match_agent_token(
valid_mask, agent_pos, agent_heading, agent_shape, token_traj, None # token_traj_all
)
traj_pos = traj_heading = None
if len(token_all) > 0:
traj_pos = token_all.mean(dim=3) # [n_agent, n_step, 6, 2]
diff_xy = token_all[..., 0, :] - token_all[..., 3, :]
traj_heading = torch.arctan2(diff_xy[..., 1], diff_xy[..., 0])
token_pos = token_contour.mean(dim=2) # [n_agent, n_step, 2]
diff_xy = token_contour[:, :, 0, :] - token_contour[:, :, 3, :]
token_heading = torch.arctan2(diff_xy[:, :, 1], diff_xy[:, :, 0])
# token_index: (num_agent, num_timestep // shift) e.g. (49, 18)
# token_contour: (num_agent, num_timestep // shift, contour_dim, feat_dim, 2) e.g. (49, 18, 4, 2)
# veh_token_index, veh_token_contour = self._match_agent_token(veh_valid_mask, veh_pos, agent_heading[vehicle_mask],
# 'veh', agent_shape[vehicle_mask])
# ped_token_index, ped_token_contour = self._match_agent_token(ped_valid_mask, ped_pos, agent_heading[ped_mask],
# 'ped', agent_shape[ped_mask])
# cyc_token_index, cyc_token_contour = self._match_agent_token(cyc_valid_mask, cyc_pos, agent_heading[cyclist_mask],
# 'cyc', agent_shape[cyclist_mask])
# token_index = torch.zeros((agent_pos.shape[0], veh_token_index.shape[1])).to(torch.int64)
# token_index[vehicle_mask] = veh_token_index
# token_index[ped_mask] = ped_token_index
# token_index[cyclist_mask] = cyc_token_index
# ! compute agent states
bos_index = torch.argmax(token_valid_mask.long(), dim=1)
eos_index = token_valid_mask.shape[1] - 1 - torch.argmax(torch.flip(token_valid_mask.long(), dims=[1]), dim=1)
state_index = torch.ones_like(token_index) # init with all valid
step_index = torch.arange(state_index.shape[1])[None].repeat(state_index.shape[0], 1).to(token_index.device)
state_index[step_index == bos_index[:, None]] = self.enter_state
state_index[step_index == eos_index[:, None]] = self.exit_state
state_index[(step_index < bos_index[:, None]) | (step_index > eos_index[:, None])] = self.invalid_state
# ! IMPORTANT: if the last step is exit token, should convert it back to valid token
state_index[state_index[:, -1] == self.exit_state, -1] = self.valid_state
# update token attributions according to state tokens
token_valid_mask[state_index == self.enter_state] = False
token_pos[state_index == self.invalid_state] = 0.
token_heading[state_index == self.invalid_state] = 0.
for i in range(self.shift, agent_pos.shape[1], self.shift):
is_bos = state_index[:, i // self.shift - 1] == self.enter_state
token_pos[is_bos, i // self.shift - 1] = agent_pos[is_bos, i].clone()
# token_heading[is_bos, i // self.shift - 1] = agent_heading[is_bos, i].clone()
token_index[state_index == self.invalid_state] = -1
token_index[state_index == self.enter_state] = -2
# acc_token_valid_step = torch.concat([torch.zeros_like(token_valid_mask[:, :1]),
# torch.cumsum(token_valid_mask.int(), dim=1),
# torch.zeros_like(token_valid_mask[:, -1:])], dim=1)
# state_index = torch.ones_like(token_index) # init with all valid
# max_valid_index = torch.argmax(acc_token_valid_step, dim=1)
# for step in range(1, acc_token_valid_step.shape[1] - 1):
# # replace part of motion tokens with special tokens
# is_bos = (acc_token_valid_step[:, step] == 0) & (acc_token_valid_step[:, step + 1] == 1)
# is_eos = (step == max_valid_index) & (step < acc_token_valid_step.shape[1] - 2) & ~is_bos
# is_invalid = ~token_valid_mask[:, step - 1] & ~is_bos & ~is_eos
# state_index[is_bos, step - 1] = self.enter_state
# state_index[is_eos, step - 1] = self.exit_state
# state_index[is_invalid, step - 1] = self.invalid_state
# token_valid_mask[state_index[:, 0] == self.valid_state, 0] = False
# state_index[state_index[:, 0] == self.valid_state, 0] = self.enter_state
# token_contour = torch.zeros((agent_pos.shape[0], veh_token_contour.shape[1],
# veh_token_contour.shape[2], veh_token_contour.shape[3]))
# token_contour[vehicle_mask] = veh_token_contour
# token_contour[ped_mask] = ped_token_contour
# token_contour[cyclist_mask] = cyc_token_contour
raw_token_valid_mask = token_valid_mask.clone()
if not self.disable_invalid:
token_valid_mask = torch.ones_like(token_valid_mask).bool()
# apply mask
# apply_mask = raw_token_valid_mask.sum(dim=-1) > 2
# if self.training and os.getenv('AUG_MASK', False):
# aug_mask = torch.randint(0, 2, (raw_token_valid_mask.shape[0],)).to(raw_token_valid_mask).bool()
# apply_mask &= aug_mask
# remove invalid agents which are outside the range of pl2inva_radius
# remove_ina_mask = torch.zeros_like(data['agent']['train_mask'])
# if self.pl2seed_radius is not None:
# num_history_token = 1 if self.training else 2 # NOTE: hard code!!!
# av_index = int(data['agent']['av_index'])
# is_invalid = torch.any(state_index[:, :num_history_token] == self.invalid_state, dim=-1)
# ina_bos_mask = (state_index == self.enter_state) & is_invalid[:, None]
# invalid_bos_step = torch.nonzero(ina_bos_mask, as_tuple=False)
# av_bos_pos = token_pos[av_index, invalid_bos_step[:, 1]] # (num_invalid_bos, 2)
# ina_bos_pos = token_pos[invalid_bos_step[:, 0], invalid_bos_step[:, 1]] # (num_invalid_bos, 2)
# distance = torch.sqrt(torch.sum((ina_bos_pos - av_bos_pos) ** 2, dim=-1))
# remove_ina_mask = (distance > self.pl2seed_radius) | (distance < 0.)
# # apply_mask[invalid_bos_step[remove_ina_mask, 0]] = False
# data['agent']['remove_ina_mask'] = remove_ina_mask
# apply_mask[int(data['agent']['av_index'])] = True
# data['agent']['num_nodes'] = apply_mask.sum()
# av_id = data['agent']['id'][data['agent']['av_index']]
# data['agent']['id'] = [data['agent']['id'][i] for i in range(len(apply_mask)) if apply_mask[i]]
# data['agent']['av_index'] = data['agent']['id'].index(av_id)
# data['agent']['id'] = torch.tensor(data['agent']['id'], dtype=torch.long)
# agent_keys = ['valid_mask', 'predict_mask', 'type', 'category', 'position', 'heading', 'velocity', 'shape']
# for key in agent_keys:
# if key in data['agent']:
# data['agent'][key] = data['agent'][key][apply_mask]
# reset agent shapes
for i in range(n_agent):
bos_shape_index = torch.nonzero(torch.all(data['agent']['shape'][i] != 0., dim=-1))[0]
data['agent']['shape'][i, :] = data['agent']['shape'][i, bos_shape_index]
if torch.any(torch.all(data['agent']['shape'][i] == 0., dim=-1)):
raise ValueError(f"Found invalid shape values.")
# compute mean height values for each scenario
raw_height = data['agent']['position'][:, self.current_step, 2]
valid_height = raw_token_valid_mask[:, 1].bool()
veh_mean_z = raw_height[agent_type_masks['veh'] & valid_height].mean()
ped_mean_z = raw_height[agent_type_masks['ped'] & valid_height].mean().nan_to_num_(veh_mean_z) # FIXME: hard code
cyc_mean_z = raw_height[agent_type_masks['cyc'] & valid_height].mean().nan_to_num_(veh_mean_z)
# output
data['agent']['token_idx'] = token_index
data['agent']['state_idx'] = state_index
data['agent']['token_contour'] = token_contour
data['agent']['traj_pos'] = traj_pos
data['agent']['traj_heading'] = traj_heading
data['agent']['token_pos'] = token_pos
data['agent']['token_heading'] = token_heading
data['agent']['agent_valid_mask'] = token_valid_mask # (a, t)
data['agent']['raw_agent_valid_mask'] = raw_token_valid_mask
data['agent']['raw_height'] = dict(veh=veh_mean_z,
ped=ped_mean_z,
cyc=cyc_mean_z)
for type in ['veh', 'ped', 'cyc']:
data['agent'][f'trajectory_token_{type}'] = getattr(
self, f'agent_token_all_{type}') # [n_token, 6, 4, 2]
return data
def _match_agent_token(self, valid_mask, pos, heading, shape, token_traj, token_traj_all=None):
"""
Parameters:
valid_mask (torch.Tensor): Validity mask for agents over time. Shape: (n_agent, n_step)
pos (torch.Tensor): Positions of agents at each time step. Shape: (n_agent, n_step, 3)
heading (torch.Tensor): Headings of agents at each time step. Shape: (n_agent, n_step)
shape (torch.Tensor): Shape information of agents. Shape: (n_agent, 3)
token_traj (torch.Tensor): Token trajectories for agents. Shape: (n_agent, n_token, 4, 2)
token_traj_all (torch.Tensor): Token trajectories for all agents. Shape: (n_agnet, n_token_all, n_contour, 4, 2)
Returns:
tuple: Contains token indices and contours for agents.
"""
n_agent, n_step = valid_mask.shape
# agent_token_src = self.trajectory_token[category]
# if self.shift <= 2:
# if category == 'veh':
# width = 1.0
# length = 2.4
# elif category == 'cyc':
# width = 0.5
# length = 1.5
# else:
# width = 0.5
# length = 0.5
# else:
# if category == 'veh':
# width = 2.0
# length = 4.8
# elif category == 'cyc':
# width = 1.0
# length = 2.0
# else:
# width = 1.0
# length = 1.0
_, n_token, token_contour_dim, feat_dim = token_traj.shape
# agent_token_src = agent_token_src.reshape(1, token_num * token_contour_dim, feat_dim).repeat(agent_num, 0)
token_index_list = []
token_contour_list = []
token_all = []
prev_heading = heading[:, 0]
prev_pos = pos[:, 0]
prev_token_idx = None
for i in range(self.shift, n_step, self.shift): # [5, 10, 15, ..., 90]
_valid_mask = valid_mask[:, i - self.shift] & valid_mask[:, i]
_invalid_mask = ~_valid_mask
# transformation
theta = prev_heading
cos, sin = theta.cos(), theta.sin()
rot_mat = theta.new_zeros(n_agent, 2, 2)
rot_mat[:, 0, 0] = cos
rot_mat[:, 0, 1] = sin
rot_mat[:, 1, 0] = -sin
rot_mat[:, 1, 1] = cos
agent_token_world = torch.bmm(token_traj.flatten(1, 2), rot_mat).reshape(*token_traj.shape)
agent_token_world += prev_pos[:, None, None, :]
cur_contour = cal_polygon_contour(pos[:, i], heading[:, i], shape) # [n_agent, 4, 2]
agent_token_index = torch.argmin(
torch.norm(agent_token_world - cur_contour[:, None, ...], dim=-1).sum(-1), dim=-1
)
agent_token_contour = agent_token_world[torch.arange(n_agent), agent_token_index] # [n_agent, 4, 2]
# agent_token_index = torch.from_numpy(np.argmin(
# np.mean(np.sqrt(np.sum((cur_contour[:, None, ...] - agent_token_world.numpy()) ** 2, axis=-1)), axis=2),
# axis=-1))
# except for the first timestep TODO
if prev_token_idx is not None and self.noise:
same_idx = prev_token_idx == agent_token_index
same_idx[:] = True
topk_indices = np.argsort(
np.mean(np.sqrt(np.sum((cur_contour[:, None, ...] - agent_token_world.numpy()) ** 2, axis=-1)),
axis=2), axis=-1)[:, :5]
sample_topk = np.random.choice(range(0, topk_indices.shape[1]), topk_indices.shape[0])
agent_token_index[same_idx] = \
torch.from_numpy(topk_indices[np.arange(topk_indices.shape[0]), sample_topk])[same_idx]
# update prev_heading
prev_heading = heading[:, i].clone()
diff_xy = agent_token_contour[:, 0] - agent_token_contour[:, 3]
prev_heading[_valid_mask] = torch.arctan2(diff_xy[:, 1], diff_xy[:, 0])[_valid_mask]
# update prev_pos
prev_pos = pos[:, i].clone()
prev_pos[_valid_mask] = agent_token_contour.mean(dim=1)[_valid_mask]
prev_token_idx = agent_token_index
token_index_list.append(agent_token_index)
token_contour_list.append(agent_token_contour)
# calculate tokenized trajectory
if token_traj_all is not None:
agent_token_all_world = torch.bmm(token_traj_all.flatten(1, 3), rot_mat).reshape(*token_traj_all.shape)
agent_token_all_world += prev_pos[:, None, None, None, :]
agent_token_all = agent_token_all_world[torch.arange(n_agent), agent_token_index] # [n_agent, 6, 4, 2]
token_all.append(agent_token_all)
token_index = torch.stack(token_index_list, dim=1) # [n_agent, n_step]
token_contour = torch.stack(token_contour_list, dim=1) # [n_agent, n_step, 4, 2]
if len(token_all) > 0:
token_all = torch.stack(token_all, dim=1) # [n_agent, n_step, 6, 4, 2]
# sanity check
assert tuple(token_index.shape) == (n_agent, n_step // self.shift), \
f'Invalid token_index shape, got {token_index.shape}'
assert tuple(token_contour.shape )== (n_agent, n_step // self.shift, token_contour_dim, feat_dim), \
f'Invalid token_contour shape, got {token_contour.shape}'
# extra matching
# if not self.training:
# theta = heading[extra_mask, self.current_step - 1]
# prev_pos = pos[extra_mask, self.current_step - 1]
# cur_pos = pos[extra_mask, self.current_step]
# cur_heading = heading[extra_mask, self.current_step]
# cos, sin = theta.cos(), theta.sin()
# rot_mat = theta.new_zeros(extra_mask.sum(), 2, 2)
# rot_mat[:, 0, 0] = cos
# rot_mat[:, 0, 1] = sin
# rot_mat[:, 1, 0] = -sin
# rot_mat[:, 1, 1] = cos
# agent_token_world = torch.bmm(torch.from_numpy(token_last).to(torch.float), rot_mat).reshape(
# extra_mask.sum(), token_num, token_contour_dim, feat_dim)
# agent_token_world += prev_pos[:, None, None, :]
# cur_contour = cal_polygon_contour(cur_pos[:, 0], cur_pos[:, 1], cur_heading, width, length)
# agent_token_index = torch.from_numpy(np.argmin(
# np.mean(np.sqrt(np.sum((cur_contour[:, None, ...] - agent_token_world.numpy()) ** 2, axis=-1)), axis=2),
# axis=-1))
# token_contour_select = agent_token_world[torch.arange(extra_mask.sum()), agent_token_index]
# token_index[extra_mask, 1] = agent_token_index
# token_contour[extra_mask, 1] = token_contour_select
return token_index, token_contour, token_all
@staticmethod
def _tokenize_map(data):
data['map_polygon']['type'] = data['map_polygon']['type'].to(torch.uint8)
data['map_point']['type'] = data['map_point']['type'].to(torch.uint8)
pt2pl = data[('map_point', 'to', 'map_polygon')]['edge_index']
pt_type = data['map_point']['type'].to(torch.uint8)
pt_side = torch.zeros_like(pt_type)
pt_pos = data['map_point']['position'][:, :2]
data['map_point']['orientation'] = wrap_angle(data['map_point']['orientation'])
pt_heading = data['map_point']['orientation']
split_polyline_type = []
split_polyline_pos = []
split_polyline_theta = []
split_polyline_side = []
pl_idx_list = []
split_polygon_type = []
data['map_point']['type'].unique()
for i in sorted(np.unique(pt2pl[1])): # number of polygons in the scenario
index = pt2pl[0, pt2pl[1] == i] # index of points which belongs to i-th polygon
polygon_type = data['map_polygon']["type"][i]
cur_side = pt_side[index]
cur_type = pt_type[index]
cur_pos = pt_pos[index]
cur_heading = pt_heading[index]
for side_val in np.unique(cur_side):
for type_val in np.unique(cur_type):
if type_val == 13:
continue
indices = np.where((cur_side == side_val) & (cur_type == type_val))[0]
if len(indices) <= 2:
continue
split_polyline = interplating_polyline(cur_pos[indices].numpy(), cur_heading[indices].numpy())
if split_polyline is None:
continue
new_cur_type = cur_type[indices][0]
new_cur_side = cur_side[indices][0]
map_polygon_type = polygon_type.repeat(split_polyline.shape[0])
new_cur_type = new_cur_type.repeat(split_polyline.shape[0])
new_cur_side = new_cur_side.repeat(split_polyline.shape[0])
cur_pl_idx = torch.Tensor([i])
new_cur_pl_idx = cur_pl_idx.repeat(split_polyline.shape[0])
split_polyline_pos.append(split_polyline[..., :2])
split_polyline_theta.append(split_polyline[..., 2])
split_polyline_type.append(new_cur_type)
split_polyline_side.append(new_cur_side)
pl_idx_list.append(new_cur_pl_idx)
split_polygon_type.append(map_polygon_type)
split_polyline_pos = torch.cat(split_polyline_pos, dim=0)
split_polyline_theta = torch.cat(split_polyline_theta, dim=0)
split_polyline_type = torch.cat(split_polyline_type, dim=0)
split_polyline_side = torch.cat(split_polyline_side, dim=0)
split_polygon_type = torch.cat(split_polygon_type, dim=0)
pl_idx_list = torch.cat(pl_idx_list, dim=0)
data['map_save'] = {}
data['pt_token'] = {}
data['map_save']['traj_pos'] = split_polyline_pos
data['map_save']['traj_theta'] = split_polyline_theta[:, 0] # torch.arctan2(vec[:, 1], vec[:, 0])
data['map_save']['pl_idx_list'] = pl_idx_list
data['pt_token']['type'] = split_polyline_type
data['pt_token']['side'] = split_polyline_side
data['pt_token']['pl_type'] = split_polygon_type
data['pt_token']['num_nodes'] = split_polyline_pos.shape[0]
return data