File size: 37,444 Bytes
c1a7f73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 |
import os
import torch
import math
import pickle
import numpy as np
from torch import nn
from typing import Dict, Sequence
from scipy.interpolate import interp1d
from scipy.spatial.distance import euclidean
from dev.utils.func import wrap_angle
SHIFT = 5
AGENT_SHAPE = {
'vehicle': [4.3, 1.8, 1.],
'pedstrain': [0.5, 0.5, 1.],
'cyclist': [1.9, 0.5, 1.],
}
AGENT_TYPE = ['veh', 'ped', 'cyc', 'seed']
AGENT_STATE = ['invalid', 'valid', 'enter', 'exit']
@torch.no_grad()
def cal_polygon_contour(pos, head, width_length) -> torch.Tensor: # [n_agent, n_step, n_target, 4, 2]
x, y = pos[..., 0], pos[..., 1] # [n_agent, n_step, n_target]
width, length = width_length[..., 0], width_length[..., 1] # [n_agent, 1, 1]
half_cos = 0.5 * head.cos() # [n_agent, n_step, n_target]
half_sin = 0.5 * head.sin() # [n_agent, n_step, n_target]
length_cos = length * half_cos # [n_agent, n_step, n_target]
length_sin = length * half_sin # [n_agent, n_step, n_target]
width_cos = width * half_cos # [n_agent, n_step, n_target]
width_sin = width * half_sin # [n_agent, n_step, n_target]
left_front_x = x + length_cos - width_sin
left_front_y = y + length_sin + width_cos
left_front = torch.stack((left_front_x, left_front_y), dim=-1)
right_front_x = x + length_cos + width_sin
right_front_y = y + length_sin - width_cos
right_front = torch.stack((right_front_x, right_front_y), dim=-1)
right_back_x = x - length_cos + width_sin
right_back_y = y - length_sin - width_cos
right_back = torch.stack((right_back_x, right_back_y), dim=-1)
left_back_x = x - length_cos - width_sin
left_back_y = y - length_sin + width_cos
left_back = torch.stack((left_back_x, left_back_y), dim=-1)
polygon_contour = torch.stack(
(left_front, right_front, right_back, left_back), dim=-2
)
return polygon_contour
def interplating_polyline(polylines, heading, distance=0.5, split_distace=5):
# Calculate the cumulative distance along the path, up-sample the polyline to 0.5 meter
dist_along_path_list = [[0]]
polylines_list = [[polylines[0]]]
for i in range(1, polylines.shape[0]):
euclidean_dist = euclidean(polylines[i, :2], polylines[i - 1, :2])
heading_diff = min(abs(max(heading[i], heading[i - 1]) - min(heading[1], heading[i - 1])),
abs(max(heading[i], heading[i - 1]) - min(heading[1], heading[i - 1]) + math.pi))
if heading_diff > math.pi / 4 and euclidean_dist > 3:
dist_along_path_list.append([0])
polylines_list.append([polylines[i]])
elif heading_diff > math.pi / 8 and euclidean_dist > 3:
dist_along_path_list.append([0])
polylines_list.append([polylines[i]])
elif heading_diff > 0.1 and euclidean_dist > 3:
dist_along_path_list.append([0])
polylines_list.append([polylines[i]])
elif euclidean_dist > 10:
dist_along_path_list.append([0])
polylines_list.append([polylines[i]])
else:
dist_along_path_list[-1].append(dist_along_path_list[-1][-1] + euclidean_dist)
polylines_list[-1].append(polylines[i])
# plt.plot(polylines[:, 0], polylines[:, 1])
# plt.savefig('tmp.jpg')
new_x_list = []
new_y_list = []
multi_polylines_list = []
for idx in range(len(dist_along_path_list)):
if len(dist_along_path_list[idx]) < 2:
continue
dist_along_path = np.array(dist_along_path_list[idx])
polylines_cur = np.array(polylines_list[idx])
# Create interpolation functions for x and y coordinates
fx = interp1d(dist_along_path, polylines_cur[:, 0])
fy = interp1d(dist_along_path, polylines_cur[:, 1])
# fyaw = interp1d(dist_along_path, heading)
# Create an array of distances at which to interpolate
new_dist_along_path = np.arange(0, dist_along_path[-1], distance)
new_dist_along_path = np.concatenate([new_dist_along_path, dist_along_path[[-1]]])
# Use the interpolation functions to generate new x and y coordinates
new_x = fx(new_dist_along_path)
new_y = fy(new_dist_along_path)
# new_yaw = fyaw(new_dist_along_path)
new_x_list.append(new_x)
new_y_list.append(new_y)
# Combine the new x and y coordinates into a single array
new_polylines = np.vstack((new_x, new_y)).T
polyline_size = int(split_distace / distance)
if new_polylines.shape[0] >= (polyline_size + 1):
padding_size = (new_polylines.shape[0] - (polyline_size + 1)) % polyline_size
final_index = (new_polylines.shape[0] - (polyline_size + 1)) // polyline_size + 1
else:
padding_size = new_polylines.shape[0]
final_index = 0
multi_polylines = None
new_polylines = torch.from_numpy(new_polylines)
new_heading = torch.atan2(new_polylines[1:, 1] - new_polylines[:-1, 1],
new_polylines[1:, 0] - new_polylines[:-1, 0])
new_heading = torch.cat([new_heading, new_heading[-1:]], -1)[..., None]
new_polylines = torch.cat([new_polylines, new_heading], -1)
if new_polylines.shape[0] >= (polyline_size + 1):
multi_polylines = new_polylines.unfold(dimension=0, size=polyline_size + 1, step=polyline_size)
multi_polylines = multi_polylines.transpose(1, 2)
multi_polylines = multi_polylines[:, ::5, :]
if padding_size >= 3:
last_polyline = new_polylines[final_index * polyline_size:]
last_polyline = last_polyline[torch.linspace(0, last_polyline.shape[0] - 1, steps=3).long()]
if multi_polylines is not None:
multi_polylines = torch.cat([multi_polylines, last_polyline.unsqueeze(0)], dim=0)
else:
multi_polylines = last_polyline.unsqueeze(0)
if multi_polylines is None:
continue
multi_polylines_list.append(multi_polylines)
if len(multi_polylines_list) > 0:
multi_polylines_list = torch.cat(multi_polylines_list, dim=0)
else:
multi_polylines_list = None
return multi_polylines_list
# def interplating_polyline(polylines, heading, distance=0.5, split_distance=5, device='cpu'):
# dist_along_path_list = [[0]]
# polylines_list = [[polylines[0]]]
# for i in range(1, polylines.shape[0]):
# euclidean_dist = torch.norm(polylines[i, :2] - polylines[i - 1, :2])
# heading_diff = min(abs(max(heading[i], heading[i - 1]) - min(heading[1], heading[i - 1])),
# abs(max(heading[i], heading[i - 1]) - min(heading[1], heading[i - 1]) + torch.pi))
# if heading_diff > torch.pi / 4 and euclidean_dist > 3:
# dist_along_path_list.append([0])
# polylines_list.append([polylines[i]])
# elif heading_diff > torch.pi / 8 and euclidean_dist > 3:
# dist_along_path_list.append([0])
# polylines_list.append([polylines[i]])
# elif heading_diff > 0.1 and euclidean_dist > 3:
# dist_along_path_list.append([0])
# polylines_list.append([polylines[i]])
# elif euclidean_dist > 10:
# dist_along_path_list.append([0])
# polylines_list.append([polylines[i]])
# else:
# dist_along_path_list[-1].append(dist_along_path_list[-1][-1] + euclidean_dist)
# polylines_list[-1].append(polylines[i])
# new_x_list = []
# new_y_list = []
# multi_polylines_list = []
# for idx in range(len(dist_along_path_list)):
# if len(dist_along_path_list[idx]) < 2:
# continue
# dist_along_path = torch.tensor(dist_along_path_list[idx], device=device)
# polylines_cur = torch.stack(polylines_list[idx])
# new_dist_along_path = torch.arange(0, dist_along_path[-1], distance)
# new_dist_along_path = torch.cat([new_dist_along_path, dist_along_path[[-1]]])
# new_x = torch.interp(new_dist_along_path, dist_along_path, polylines_cur[:, 0])
# new_y = torch.interp(new_dist_along_path, dist_along_path, polylines_cur[:, 1])
# new_x_list.append(new_x)
# new_y_list.append(new_y)
# new_polylines = torch.stack((new_x, new_y), dim=-1)
# polyline_size = int(split_distance / distance)
# if new_polylines.shape[0] >= (polyline_size + 1):
# padding_size = (new_polylines.shape[0] - (polyline_size + 1)) % polyline_size
# final_index = (new_polylines.shape[0] - (polyline_size + 1)) // polyline_size + 1
# else:
# padding_size = new_polylines.shape[0]
# final_index = 0
# multi_polylines = None
# new_heading = torch.atan2(new_polylines[1:, 1] - new_polylines[:-1, 1],
# new_polylines[1:, 0] - new_polylines[:-1, 0])
# new_heading = torch.cat([new_heading, new_heading[-1:]], -1)[..., None]
# new_polylines = torch.cat([new_polylines, new_heading], -1)
# if new_polylines.shape[0] >= (polyline_size + 1):
# multi_polylines = new_polylines.unfold(dimension=0, size=polyline_size + 1, step=polyline_size)
# multi_polylines = multi_polylines.transpose(1, 2)
# multi_polylines = multi_polylines[:, ::5, :]
# if padding_size >= 3:
# last_polyline = new_polylines[final_index * polyline_size:]
# last_polyline = last_polyline[torch.linspace(0, last_polyline.shape[0] - 1, steps=3).long()]
# if multi_polylines is not None:
# multi_polylines = torch.cat([multi_polylines, last_polyline.unsqueeze(0)], dim=0)
# else:
# multi_polylines = last_polyline.unsqueeze(0)
# if multi_polylines is None:
# continue
# multi_polylines_list.append(multi_polylines)
# if len(multi_polylines_list) > 0:
# multi_polylines_list = torch.cat(multi_polylines_list, dim=0)
# else:
# multi_polylines_list = None
# return multi_polylines_list
def average_distance_vectorized(point_set1, centroids):
dists = np.sqrt(np.sum((point_set1[:, None, :, :] - centroids[None, :, :, :]) ** 2, axis=-1))
return np.mean(dists, axis=2)
def assign_clusters(sub_X, centroids):
distances = average_distance_vectorized(sub_X, centroids)
return np.argmin(distances, axis=1)
class TokenProcessor(nn.Module):
def __init__(self, token_size,
training: bool=False,
predict_motion: bool=False,
predict_state: bool=False,
predict_map: bool=False,
state_token: Dict[str, int]=None, **kwargs):
super().__init__()
module_dir = os.path.dirname(os.path.dirname(__file__))
self.agent_token_path = os.path.join(module_dir, f'tokens/agent_vocab_555_s2.pkl')
self.map_token_traj_path = os.path.join(module_dir, 'tokens/map_traj_token5.pkl')
assert os.path.exists(self.agent_token_path), f"File {self.agent_token_path} not found."
assert os.path.exists(self.map_token_traj_path), f"File {self.map_token_traj_path} not found."
self.training = training
self.token_size = token_size
self.disable_invalid = not predict_state
self.predict_motion = predict_motion
self.predict_state = predict_state
self.predict_map = predict_map
# define new special tokens
self.bos_token_index = token_size
self.eos_token_index = token_size + 1
self.invalid_token_index = token_size + 2
self.special_token_index = []
self._init_token()
# define agent states
self.invalid_state = int(state_token['invalid'])
self.valid_state = int(state_token['valid'])
self.enter_state = int(state_token['enter'])
self.exit_state = int(state_token['exit'])
self.pl2seed_radius = kwargs.get('pl2seed_radius', None)
self.noise = False
self.disturb = False
self.shift = 5
self.training = False
self.current_step = 10
# debugging
self.debug_data = None
def forward(self, data):
"""
Each pkl data represents a extracted scenario from raw tfrecord data
"""
data['agent']['av_index'] = data['agent']['av_idx']
data = self._tokenize_agent(data)
# data = self._tokenize_map(data)
del data['city']
if 'polygon_is_intersection' in data['map_polygon']:
del data['map_polygon']['polygon_is_intersection']
if 'route_type' in data['map_polygon']:
del data['map_polygon']['route_type']
av_index = int(data['agent']['av_idx'])
data['ego_pos'] = data['agent']['token_pos'][[av_index]]
data['ego_heading'] = data['agent']['token_heading'][[av_index]]
return data
def _init_token(self):
agent_token_data = pickle.load(open(self.agent_token_path, 'rb'))
for agent_type, token in agent_token_data['token_all'].items():
token = torch.tensor(token, dtype=torch.float32)
self.register_buffer(f'agent_token_all_{agent_type}', token, persistent=False) # [n_token, 6, 4, 2]
map_token_traj = pickle.load(open(self.map_token_traj_path, 'rb'))['traj_src']
map_token_traj = torch.tensor(map_token_traj, dtype=torch.float32)
self.register_buffer('map_token_traj_src', map_token_traj, persistent=False) # [n_token, 11 * 2]
# self.trajectory_token = agent_token_data['token'] # (token_size, 4, 2)
# self.trajectory_token_all = agent_token_data['token_all'] # (token_size, shift + 1, 4, 2)
# self.map_token = {'traj_src': map_token_traj['traj_src']}
@staticmethod
def clean_heading(valid: torch.Tensor, heading: torch.Tensor) -> torch.Tensor:
valid_pairs = valid[:, :-1] & valid[:, 1:]
for i in range(heading.shape[1] - 1):
heading_diff = torch.abs(wrap_angle(heading[:, i] - heading[:, i + 1]))
change_needed = (heading_diff > 1.5) & valid_pairs[:, i]
heading[:, i + 1][change_needed] = heading[:, i][change_needed]
return heading
def _extrapolate_agent_to_prev_token_step(self, valid, pos, heading, vel) -> Sequence[torch.Tensor]:
# [n_agent], max will give the first True step
first_valid_step = torch.max(valid, dim=1).indices
for i, t in enumerate(first_valid_step): # extrapolate to previous 5th step.
n_step_to_extrapolate = t % self.shift
if (t == self.current_step) and (not valid[i, self.current_step - self.shift]):
# such that at least one token is valid in the history.
n_step_to_extrapolate = self.shift
if n_step_to_extrapolate > 0:
vel[i, t - n_step_to_extrapolate : t] = vel[i, t]
valid[i, t - n_step_to_extrapolate : t] = True
heading[i, t - n_step_to_extrapolate : t] = heading[i, t]
for j in range(n_step_to_extrapolate):
pos[i, t - j - 1] = pos[i, t - j] - vel[i, t] * 0.1
return valid, pos, heading, vel
def _get_agent_shape(self, agent_type_masks: dict) -> torch.Tensor:
agent_shape = 0.
for type, type_mask in agent_type_masks.items():
if type == 'veh': width = 2.; length = 4.8
if type == 'ped': width = 1.; length = 2.
if type == 'cyc': width = 1.; length = 1.
agent_shape += torch.stack([width * type_mask, length * type_mask], dim=-1)
return agent_shape
def _get_token_traj_all(self, agent_type_masks: dict) -> torch.Tensor:
token_traj_all = 0.
for type, type_mask in agent_type_masks.items():
token_traj_all += type_mask[:, None, None, None, None] * (
getattr(self, f'agent_token_all_{type}').unsqueeze(0)
)
return token_traj_all
def _tokenize_agent(self, data):
# get raw data
valid_mask = data['agent']['valid_mask'] # [n_agent, n_step]
agent_heading = data['agent']['heading'] # [n_agent, n_step]
agent_pos = data['agent']['position'][..., :2].contiguous() # [n_agent, n_step, 2]
agent_vel = data['agent']['velocity'] # [n_agent, n_step, 2]
agent_type = data['agent']['type']
agent_category = data['agent']['category']
n_agent, n_all_step = valid_mask.shape
agent_type_masks = {
"veh": agent_type == 0,
"ped": agent_type == 1,
"cyc": agent_type == 2,
}
agent_heading = self.clean_heading(valid_mask, agent_heading)
agent_shape = self._get_agent_shape(agent_type_masks)
token_traj_all = self._get_token_traj_all(agent_type_masks)
valid_mask, agent_pos, agent_heading, agent_vel = self._extrapolate_agent_to_prev_token_step(
valid_mask, agent_pos, agent_heading, agent_vel
)
token_traj = token_traj_all[:, :, -1, ...]
data['agent']['token_traj_all'] = token_traj_all # [n_agent, n_token, 6, 4, 2]
data['agent']['token_traj'] = token_traj # [n_agent, n_token, 4, 2]
valid_mask_shift = valid_mask.unfold(1, self.shift + 1, self.shift)
token_valid_mask = valid_mask_shift[:, :, 0] * valid_mask_shift[:, :, -1]
# vehicle_mask = agent_type == 0
# cyclist_mask = agent_type == 2
# ped_mask = agent_type == 1
# veh_pos = agent_pos[vehicle_mask, :, :]
# veh_valid_mask = valid_mask[vehicle_mask, :]
# cyc_pos = agent_pos[cyclist_mask, :, :]
# cyc_valid_mask = valid_mask[cyclist_mask, :]
# ped_pos = agent_pos[ped_mask, :, :]
# ped_valid_mask = valid_mask[ped_mask, :]
# index: [n_agent, n_step] contour: [n_agent, n_step, 4, 2]
token_index, token_contour, token_all = self._match_agent_token(
valid_mask, agent_pos, agent_heading, agent_shape, token_traj, None # token_traj_all
)
traj_pos = traj_heading = None
if len(token_all) > 0:
traj_pos = token_all.mean(dim=3) # [n_agent, n_step, 6, 2]
diff_xy = token_all[..., 0, :] - token_all[..., 3, :]
traj_heading = torch.arctan2(diff_xy[..., 1], diff_xy[..., 0])
token_pos = token_contour.mean(dim=2) # [n_agent, n_step, 2]
diff_xy = token_contour[:, :, 0, :] - token_contour[:, :, 3, :]
token_heading = torch.arctan2(diff_xy[:, :, 1], diff_xy[:, :, 0])
# token_index: (num_agent, num_timestep // shift) e.g. (49, 18)
# token_contour: (num_agent, num_timestep // shift, contour_dim, feat_dim, 2) e.g. (49, 18, 4, 2)
# veh_token_index, veh_token_contour = self._match_agent_token(veh_valid_mask, veh_pos, agent_heading[vehicle_mask],
# 'veh', agent_shape[vehicle_mask])
# ped_token_index, ped_token_contour = self._match_agent_token(ped_valid_mask, ped_pos, agent_heading[ped_mask],
# 'ped', agent_shape[ped_mask])
# cyc_token_index, cyc_token_contour = self._match_agent_token(cyc_valid_mask, cyc_pos, agent_heading[cyclist_mask],
# 'cyc', agent_shape[cyclist_mask])
# token_index = torch.zeros((agent_pos.shape[0], veh_token_index.shape[1])).to(torch.int64)
# token_index[vehicle_mask] = veh_token_index
# token_index[ped_mask] = ped_token_index
# token_index[cyclist_mask] = cyc_token_index
# ! compute agent states
bos_index = torch.argmax(token_valid_mask.long(), dim=1)
eos_index = token_valid_mask.shape[1] - 1 - torch.argmax(torch.flip(token_valid_mask.long(), dims=[1]), dim=1)
state_index = torch.ones_like(token_index) # init with all valid
step_index = torch.arange(state_index.shape[1])[None].repeat(state_index.shape[0], 1).to(token_index.device)
state_index[step_index == bos_index[:, None]] = self.enter_state
state_index[step_index == eos_index[:, None]] = self.exit_state
state_index[(step_index < bos_index[:, None]) | (step_index > eos_index[:, None])] = self.invalid_state
# ! IMPORTANT: if the last step is exit token, should convert it back to valid token
state_index[state_index[:, -1] == self.exit_state, -1] = self.valid_state
# update token attributions according to state tokens
token_valid_mask[state_index == self.enter_state] = False
token_pos[state_index == self.invalid_state] = 0.
token_heading[state_index == self.invalid_state] = 0.
for i in range(self.shift, agent_pos.shape[1], self.shift):
is_bos = state_index[:, i // self.shift - 1] == self.enter_state
token_pos[is_bos, i // self.shift - 1] = agent_pos[is_bos, i].clone()
# token_heading[is_bos, i // self.shift - 1] = agent_heading[is_bos, i].clone()
token_index[state_index == self.invalid_state] = -1
token_index[state_index == self.enter_state] = -2
# acc_token_valid_step = torch.concat([torch.zeros_like(token_valid_mask[:, :1]),
# torch.cumsum(token_valid_mask.int(), dim=1),
# torch.zeros_like(token_valid_mask[:, -1:])], dim=1)
# state_index = torch.ones_like(token_index) # init with all valid
# max_valid_index = torch.argmax(acc_token_valid_step, dim=1)
# for step in range(1, acc_token_valid_step.shape[1] - 1):
# # replace part of motion tokens with special tokens
# is_bos = (acc_token_valid_step[:, step] == 0) & (acc_token_valid_step[:, step + 1] == 1)
# is_eos = (step == max_valid_index) & (step < acc_token_valid_step.shape[1] - 2) & ~is_bos
# is_invalid = ~token_valid_mask[:, step - 1] & ~is_bos & ~is_eos
# state_index[is_bos, step - 1] = self.enter_state
# state_index[is_eos, step - 1] = self.exit_state
# state_index[is_invalid, step - 1] = self.invalid_state
# token_valid_mask[state_index[:, 0] == self.valid_state, 0] = False
# state_index[state_index[:, 0] == self.valid_state, 0] = self.enter_state
# token_contour = torch.zeros((agent_pos.shape[0], veh_token_contour.shape[1],
# veh_token_contour.shape[2], veh_token_contour.shape[3]))
# token_contour[vehicle_mask] = veh_token_contour
# token_contour[ped_mask] = ped_token_contour
# token_contour[cyclist_mask] = cyc_token_contour
raw_token_valid_mask = token_valid_mask.clone()
if not self.disable_invalid:
token_valid_mask = torch.ones_like(token_valid_mask).bool()
# apply mask
# apply_mask = raw_token_valid_mask.sum(dim=-1) > 2
# if self.training and os.getenv('AUG_MASK', False):
# aug_mask = torch.randint(0, 2, (raw_token_valid_mask.shape[0],)).to(raw_token_valid_mask).bool()
# apply_mask &= aug_mask
# remove invalid agents which are outside the range of pl2inva_radius
# remove_ina_mask = torch.zeros_like(data['agent']['train_mask'])
# if self.pl2seed_radius is not None:
# num_history_token = 1 if self.training else 2 # NOTE: hard code!!!
# av_index = int(data['agent']['av_index'])
# is_invalid = torch.any(state_index[:, :num_history_token] == self.invalid_state, dim=-1)
# ina_bos_mask = (state_index == self.enter_state) & is_invalid[:, None]
# invalid_bos_step = torch.nonzero(ina_bos_mask, as_tuple=False)
# av_bos_pos = token_pos[av_index, invalid_bos_step[:, 1]] # (num_invalid_bos, 2)
# ina_bos_pos = token_pos[invalid_bos_step[:, 0], invalid_bos_step[:, 1]] # (num_invalid_bos, 2)
# distance = torch.sqrt(torch.sum((ina_bos_pos - av_bos_pos) ** 2, dim=-1))
# remove_ina_mask = (distance > self.pl2seed_radius) | (distance < 0.)
# # apply_mask[invalid_bos_step[remove_ina_mask, 0]] = False
# data['agent']['remove_ina_mask'] = remove_ina_mask
# apply_mask[int(data['agent']['av_index'])] = True
# data['agent']['num_nodes'] = apply_mask.sum()
# av_id = data['agent']['id'][data['agent']['av_index']]
# data['agent']['id'] = [data['agent']['id'][i] for i in range(len(apply_mask)) if apply_mask[i]]
# data['agent']['av_index'] = data['agent']['id'].index(av_id)
# data['agent']['id'] = torch.tensor(data['agent']['id'], dtype=torch.long)
# agent_keys = ['valid_mask', 'predict_mask', 'type', 'category', 'position', 'heading', 'velocity', 'shape']
# for key in agent_keys:
# if key in data['agent']:
# data['agent'][key] = data['agent'][key][apply_mask]
# reset agent shapes
for i in range(n_agent):
bos_shape_index = torch.nonzero(torch.all(data['agent']['shape'][i] != 0., dim=-1))[0]
data['agent']['shape'][i, :] = data['agent']['shape'][i, bos_shape_index]
if torch.any(torch.all(data['agent']['shape'][i] == 0., dim=-1)):
raise ValueError(f"Found invalid shape values.")
# compute mean height values for each scenario
raw_height = data['agent']['position'][:, self.current_step, 2]
valid_height = raw_token_valid_mask[:, 1].bool()
veh_mean_z = raw_height[agent_type_masks['veh'] & valid_height].mean()
ped_mean_z = raw_height[agent_type_masks['ped'] & valid_height].mean().nan_to_num_(veh_mean_z) # FIXME: hard code
cyc_mean_z = raw_height[agent_type_masks['cyc'] & valid_height].mean().nan_to_num_(veh_mean_z)
# output
data['agent']['token_idx'] = token_index
data['agent']['state_idx'] = state_index
data['agent']['token_contour'] = token_contour
data['agent']['traj_pos'] = traj_pos
data['agent']['traj_heading'] = traj_heading
data['agent']['token_pos'] = token_pos
data['agent']['token_heading'] = token_heading
data['agent']['agent_valid_mask'] = token_valid_mask # (a, t)
data['agent']['raw_agent_valid_mask'] = raw_token_valid_mask
data['agent']['raw_height'] = dict(veh=veh_mean_z,
ped=ped_mean_z,
cyc=cyc_mean_z)
for type in ['veh', 'ped', 'cyc']:
data['agent'][f'trajectory_token_{type}'] = getattr(
self, f'agent_token_all_{type}') # [n_token, 6, 4, 2]
return data
def _match_agent_token(self, valid_mask, pos, heading, shape, token_traj, token_traj_all=None):
"""
Parameters:
valid_mask (torch.Tensor): Validity mask for agents over time. Shape: (n_agent, n_step)
pos (torch.Tensor): Positions of agents at each time step. Shape: (n_agent, n_step, 3)
heading (torch.Tensor): Headings of agents at each time step. Shape: (n_agent, n_step)
shape (torch.Tensor): Shape information of agents. Shape: (n_agent, 3)
token_traj (torch.Tensor): Token trajectories for agents. Shape: (n_agent, n_token, 4, 2)
token_traj_all (torch.Tensor): Token trajectories for all agents. Shape: (n_agnet, n_token_all, n_contour, 4, 2)
Returns:
tuple: Contains token indices and contours for agents.
"""
n_agent, n_step = valid_mask.shape
# agent_token_src = self.trajectory_token[category]
# if self.shift <= 2:
# if category == 'veh':
# width = 1.0
# length = 2.4
# elif category == 'cyc':
# width = 0.5
# length = 1.5
# else:
# width = 0.5
# length = 0.5
# else:
# if category == 'veh':
# width = 2.0
# length = 4.8
# elif category == 'cyc':
# width = 1.0
# length = 2.0
# else:
# width = 1.0
# length = 1.0
_, n_token, token_contour_dim, feat_dim = token_traj.shape
# agent_token_src = agent_token_src.reshape(1, token_num * token_contour_dim, feat_dim).repeat(agent_num, 0)
token_index_list = []
token_contour_list = []
token_all = []
prev_heading = heading[:, 0]
prev_pos = pos[:, 0]
prev_token_idx = None
for i in range(self.shift, n_step, self.shift): # [5, 10, 15, ..., 90]
_valid_mask = valid_mask[:, i - self.shift] & valid_mask[:, i]
_invalid_mask = ~_valid_mask
# transformation
theta = prev_heading
cos, sin = theta.cos(), theta.sin()
rot_mat = theta.new_zeros(n_agent, 2, 2)
rot_mat[:, 0, 0] = cos
rot_mat[:, 0, 1] = sin
rot_mat[:, 1, 0] = -sin
rot_mat[:, 1, 1] = cos
agent_token_world = torch.bmm(token_traj.flatten(1, 2), rot_mat).reshape(*token_traj.shape)
agent_token_world += prev_pos[:, None, None, :]
cur_contour = cal_polygon_contour(pos[:, i], heading[:, i], shape) # [n_agent, 4, 2]
agent_token_index = torch.argmin(
torch.norm(agent_token_world - cur_contour[:, None, ...], dim=-1).sum(-1), dim=-1
)
agent_token_contour = agent_token_world[torch.arange(n_agent), agent_token_index] # [n_agent, 4, 2]
# agent_token_index = torch.from_numpy(np.argmin(
# np.mean(np.sqrt(np.sum((cur_contour[:, None, ...] - agent_token_world.numpy()) ** 2, axis=-1)), axis=2),
# axis=-1))
# except for the first timestep TODO
if prev_token_idx is not None and self.noise:
same_idx = prev_token_idx == agent_token_index
same_idx[:] = True
topk_indices = np.argsort(
np.mean(np.sqrt(np.sum((cur_contour[:, None, ...] - agent_token_world.numpy()) ** 2, axis=-1)),
axis=2), axis=-1)[:, :5]
sample_topk = np.random.choice(range(0, topk_indices.shape[1]), topk_indices.shape[0])
agent_token_index[same_idx] = \
torch.from_numpy(topk_indices[np.arange(topk_indices.shape[0]), sample_topk])[same_idx]
# update prev_heading
prev_heading = heading[:, i].clone()
diff_xy = agent_token_contour[:, 0] - agent_token_contour[:, 3]
prev_heading[_valid_mask] = torch.arctan2(diff_xy[:, 1], diff_xy[:, 0])[_valid_mask]
# update prev_pos
prev_pos = pos[:, i].clone()
prev_pos[_valid_mask] = agent_token_contour.mean(dim=1)[_valid_mask]
prev_token_idx = agent_token_index
token_index_list.append(agent_token_index)
token_contour_list.append(agent_token_contour)
# calculate tokenized trajectory
if token_traj_all is not None:
agent_token_all_world = torch.bmm(token_traj_all.flatten(1, 3), rot_mat).reshape(*token_traj_all.shape)
agent_token_all_world += prev_pos[:, None, None, None, :]
agent_token_all = agent_token_all_world[torch.arange(n_agent), agent_token_index] # [n_agent, 6, 4, 2]
token_all.append(agent_token_all)
token_index = torch.stack(token_index_list, dim=1) # [n_agent, n_step]
token_contour = torch.stack(token_contour_list, dim=1) # [n_agent, n_step, 4, 2]
if len(token_all) > 0:
token_all = torch.stack(token_all, dim=1) # [n_agent, n_step, 6, 4, 2]
# sanity check
assert tuple(token_index.shape) == (n_agent, n_step // self.shift), \
f'Invalid token_index shape, got {token_index.shape}'
assert tuple(token_contour.shape )== (n_agent, n_step // self.shift, token_contour_dim, feat_dim), \
f'Invalid token_contour shape, got {token_contour.shape}'
# extra matching
# if not self.training:
# theta = heading[extra_mask, self.current_step - 1]
# prev_pos = pos[extra_mask, self.current_step - 1]
# cur_pos = pos[extra_mask, self.current_step]
# cur_heading = heading[extra_mask, self.current_step]
# cos, sin = theta.cos(), theta.sin()
# rot_mat = theta.new_zeros(extra_mask.sum(), 2, 2)
# rot_mat[:, 0, 0] = cos
# rot_mat[:, 0, 1] = sin
# rot_mat[:, 1, 0] = -sin
# rot_mat[:, 1, 1] = cos
# agent_token_world = torch.bmm(torch.from_numpy(token_last).to(torch.float), rot_mat).reshape(
# extra_mask.sum(), token_num, token_contour_dim, feat_dim)
# agent_token_world += prev_pos[:, None, None, :]
# cur_contour = cal_polygon_contour(cur_pos[:, 0], cur_pos[:, 1], cur_heading, width, length)
# agent_token_index = torch.from_numpy(np.argmin(
# np.mean(np.sqrt(np.sum((cur_contour[:, None, ...] - agent_token_world.numpy()) ** 2, axis=-1)), axis=2),
# axis=-1))
# token_contour_select = agent_token_world[torch.arange(extra_mask.sum()), agent_token_index]
# token_index[extra_mask, 1] = agent_token_index
# token_contour[extra_mask, 1] = token_contour_select
return token_index, token_contour, token_all
@staticmethod
def _tokenize_map(data):
data['map_polygon']['type'] = data['map_polygon']['type'].to(torch.uint8)
data['map_point']['type'] = data['map_point']['type'].to(torch.uint8)
pt2pl = data[('map_point', 'to', 'map_polygon')]['edge_index']
pt_type = data['map_point']['type'].to(torch.uint8)
pt_side = torch.zeros_like(pt_type)
pt_pos = data['map_point']['position'][:, :2]
data['map_point']['orientation'] = wrap_angle(data['map_point']['orientation'])
pt_heading = data['map_point']['orientation']
split_polyline_type = []
split_polyline_pos = []
split_polyline_theta = []
split_polyline_side = []
pl_idx_list = []
split_polygon_type = []
data['map_point']['type'].unique()
for i in sorted(np.unique(pt2pl[1])): # number of polygons in the scenario
index = pt2pl[0, pt2pl[1] == i] # index of points which belongs to i-th polygon
polygon_type = data['map_polygon']["type"][i]
cur_side = pt_side[index]
cur_type = pt_type[index]
cur_pos = pt_pos[index]
cur_heading = pt_heading[index]
for side_val in np.unique(cur_side):
for type_val in np.unique(cur_type):
if type_val == 13:
continue
indices = np.where((cur_side == side_val) & (cur_type == type_val))[0]
if len(indices) <= 2:
continue
split_polyline = interplating_polyline(cur_pos[indices].numpy(), cur_heading[indices].numpy())
if split_polyline is None:
continue
new_cur_type = cur_type[indices][0]
new_cur_side = cur_side[indices][0]
map_polygon_type = polygon_type.repeat(split_polyline.shape[0])
new_cur_type = new_cur_type.repeat(split_polyline.shape[0])
new_cur_side = new_cur_side.repeat(split_polyline.shape[0])
cur_pl_idx = torch.Tensor([i])
new_cur_pl_idx = cur_pl_idx.repeat(split_polyline.shape[0])
split_polyline_pos.append(split_polyline[..., :2])
split_polyline_theta.append(split_polyline[..., 2])
split_polyline_type.append(new_cur_type)
split_polyline_side.append(new_cur_side)
pl_idx_list.append(new_cur_pl_idx)
split_polygon_type.append(map_polygon_type)
split_polyline_pos = torch.cat(split_polyline_pos, dim=0)
split_polyline_theta = torch.cat(split_polyline_theta, dim=0)
split_polyline_type = torch.cat(split_polyline_type, dim=0)
split_polyline_side = torch.cat(split_polyline_side, dim=0)
split_polygon_type = torch.cat(split_polygon_type, dim=0)
pl_idx_list = torch.cat(pl_idx_list, dim=0)
data['map_save'] = {}
data['pt_token'] = {}
data['map_save']['traj_pos'] = split_polyline_pos
data['map_save']['traj_theta'] = split_polyline_theta[:, 0] # torch.arctan2(vec[:, 1], vec[:, 0])
data['map_save']['pl_idx_list'] = pl_idx_list
data['pt_token']['type'] = split_polyline_type
data['pt_token']['side'] = split_polyline_side
data['pt_token']['pl_type'] = split_polygon_type
data['pt_token']['num_nodes'] = split_polyline_pos.shape[0]
return data |