relation_extraction_bert_base_uncased

This model is a fine-tuned version of bert-base-uncased on sem_eval_2010_task_8. It achieves the following results on the evaluation set:

  • Loss: 0.9300
  • F1: 0.8616

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss F1
1.2511 1.0 107 0.6098 0.7907
0.437 2.0 214 0.5167 0.8453
0.1921 3.0 321 0.5446 0.8553
0.0795 4.0 428 0.7041 0.8527
0.0334 5.0 535 0.7774 0.8568
0.0124 6.0 642 0.8086 0.8490
0.0056 7.0 749 0.8615 0.8601
0.003 8.0 856 0.9246 0.8614
0.0014 9.0 963 0.9300 0.8616
0.0011 10.0 1070 0.9421 0.8613

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.0
  • Tokenizers 0.15.0
Downloads last month
96
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.

Model tree for gyr66/relation_extraction_bert_base_uncased

Finetuned
(2310)
this model

Dataset used to train gyr66/relation_extraction_bert_base_uncased