lr0.0001_bs16_0620_0942
This model is a fine-tuned version of nvidia/mit-b0 on the greenkwd/upwellingdetection_SST dataset. It achieves the following results on the evaluation set:
- Loss: 0.1335
- Mean Iou: 0.8871
- Mean Accuracy: 0.9459
- Overall Accuracy: 0.9536
- Accuracy Land: 0.9552
- Accuracy Upwelling: 0.9692
- Accuracy Not Upwelling: 0.9133
- Iou Land: 0.9542
- Iou Upwelling: 0.9274
- Iou Not Upwelling: 0.7796
- Dice Macro: 0.9383
- Dice Micro: 0.9536
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 500
- num_epochs: 100
- label_smoothing_factor: 0.1
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Land | Accuracy Upwelling | Accuracy Not Upwelling | Iou Land | Iou Upwelling | Iou Not Upwelling | Dice Macro | Dice Micro |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.0882 | 0.4 | 20 | 1.0699 | 0.1883 | 0.4295 | 0.3022 | 0.0162 | 0.3817 | 0.8905 | 0.0149 | 0.3664 | 0.1835 | 0.2919 | 0.3022 |
0.9223 | 0.8 | 40 | 0.8895 | 0.5561 | 0.7282 | 0.7212 | 0.6576 | 0.7873 | 0.7397 | 0.6574 | 0.7021 | 0.3088 | 0.6967 | 0.7212 |
0.7699 | 1.2 | 60 | 0.6288 | 0.6063 | 0.7519 | 0.7768 | 0.7339 | 0.8893 | 0.6323 | 0.7339 | 0.7609 | 0.3240 | 0.7334 | 0.7768 |
0.69 | 1.6 | 80 | 0.4913 | 0.6720 | 0.8138 | 0.8249 | 0.7968 | 0.8865 | 0.7580 | 0.7968 | 0.7955 | 0.4238 | 0.7894 | 0.8249 |
0.6536 | 2.0 | 100 | 0.4191 | 0.6957 | 0.8285 | 0.8440 | 0.7989 | 0.9377 | 0.7489 | 0.7989 | 0.8361 | 0.4519 | 0.8072 | 0.8440 |
0.5298 | 2.4 | 120 | 0.3944 | 0.6962 | 0.8132 | 0.8531 | 0.8292 | 0.9750 | 0.6354 | 0.8292 | 0.8257 | 0.4337 | 0.8054 | 0.8531 |
0.4779 | 2.8 | 140 | 0.3525 | 0.7445 | 0.8604 | 0.8775 | 0.8585 | 0.9409 | 0.7818 | 0.8585 | 0.8477 | 0.5273 | 0.8440 | 0.8775 |
0.4727 | 3.2 | 160 | 0.3321 | 0.7514 | 0.8651 | 0.8818 | 0.8577 | 0.9509 | 0.7868 | 0.8577 | 0.8596 | 0.5370 | 0.8489 | 0.8818 |
0.5746 | 3.6 | 180 | 0.3068 | 0.7629 | 0.8791 | 0.8865 | 0.8587 | 0.9392 | 0.8395 | 0.8587 | 0.8685 | 0.5616 | 0.8576 | 0.8865 |
0.5181 | 4.0 | 200 | 0.2654 | 0.8091 | 0.8977 | 0.9163 | 0.9140 | 0.9619 | 0.8172 | 0.9138 | 0.8833 | 0.6302 | 0.8887 | 0.9163 |
0.4094 | 4.4 | 220 | 0.2525 | 0.8288 | 0.9177 | 0.9246 | 0.9247 | 0.9402 | 0.8882 | 0.9241 | 0.8895 | 0.6729 | 0.9022 | 0.9246 |
0.5539 | 4.8 | 240 | 0.2300 | 0.8317 | 0.9224 | 0.9254 | 0.9214 | 0.9374 | 0.9085 | 0.9209 | 0.8944 | 0.6799 | 0.9042 | 0.9254 |
0.4994 | 5.2 | 260 | 0.2150 | 0.8199 | 0.9171 | 0.9186 | 0.9011 | 0.9446 | 0.9055 | 0.9010 | 0.8998 | 0.6588 | 0.8965 | 0.9186 |
0.3206 | 5.6 | 280 | 0.2043 | 0.8570 | 0.9325 | 0.9391 | 0.9449 | 0.9469 | 0.9056 | 0.9435 | 0.9035 | 0.7240 | 0.9200 | 0.9391 |
0.3138 | 6.0 | 300 | 0.1909 | 0.8538 | 0.9301 | 0.9377 | 0.9408 | 0.9510 | 0.8986 | 0.9398 | 0.9041 | 0.7176 | 0.9181 | 0.9377 |
0.3412 | 6.4 | 320 | 0.1935 | 0.8630 | 0.9280 | 0.9435 | 0.9517 | 0.9680 | 0.8644 | 0.9498 | 0.9082 | 0.7311 | 0.9236 | 0.9435 |
0.3777 | 6.8 | 340 | 0.1728 | 0.8422 | 0.9188 | 0.9328 | 0.9245 | 0.9758 | 0.8560 | 0.9243 | 0.9106 | 0.6917 | 0.9105 | 0.9328 |
0.4217 | 7.2 | 360 | 0.1847 | 0.8545 | 0.9357 | 0.9370 | 0.9393 | 0.9373 | 0.9304 | 0.9386 | 0.9028 | 0.7221 | 0.9186 | 0.9370 |
0.33 | 7.6 | 380 | 0.1690 | 0.8596 | 0.9250 | 0.9420 | 0.9460 | 0.9758 | 0.8532 | 0.9450 | 0.9102 | 0.7234 | 0.9214 | 0.9420 |
0.4913 | 8.0 | 400 | 0.1574 | 0.8682 | 0.9323 | 0.9456 | 0.9511 | 0.9689 | 0.8770 | 0.9500 | 0.9133 | 0.7413 | 0.9268 | 0.9456 |
0.3707 | 8.4 | 420 | 0.1526 | 0.8627 | 0.9253 | 0.9437 | 0.9484 | 0.9798 | 0.8476 | 0.9474 | 0.9114 | 0.7295 | 0.9234 | 0.9437 |
0.4486 | 8.8 | 440 | 0.1451 | 0.8643 | 0.9323 | 0.9433 | 0.9415 | 0.9707 | 0.8847 | 0.9407 | 0.9169 | 0.7352 | 0.9245 | 0.9433 |
0.2992 | 9.2 | 460 | 0.1411 | 0.8752 | 0.9440 | 0.9475 | 0.9520 | 0.9497 | 0.9304 | 0.9508 | 0.9151 | 0.7597 | 0.9313 | 0.9475 |
0.3912 | 9.6 | 480 | 0.1465 | 0.8637 | 0.9308 | 0.9432 | 0.9388 | 0.9774 | 0.8763 | 0.9384 | 0.9201 | 0.7325 | 0.9241 | 0.9432 |
0.3323 | 10.0 | 500 | 0.1501 | 0.8854 | 0.9351 | 0.9544 | 0.9686 | 0.9803 | 0.8564 | 0.9652 | 0.9182 | 0.7729 | 0.9372 | 0.9544 |
0.3496 | 10.4 | 520 | 0.1311 | 0.8917 | 0.9470 | 0.9559 | 0.9621 | 0.9683 | 0.9105 | 0.9600 | 0.9263 | 0.7888 | 0.9411 | 0.9559 |
0.256 | 10.8 | 540 | 0.1320 | 0.8841 | 0.9463 | 0.9520 | 0.9521 | 0.9647 | 0.9221 | 0.9511 | 0.9263 | 0.7747 | 0.9366 | 0.9520 |
0.3223 | 11.2 | 560 | 0.1451 | 0.8734 | 0.9436 | 0.9465 | 0.9405 | 0.9608 | 0.9296 | 0.9401 | 0.9247 | 0.7554 | 0.9302 | 0.9465 |
0.4234 | 11.6 | 580 | 0.1335 | 0.8871 | 0.9459 | 0.9536 | 0.9552 | 0.9692 | 0.9133 | 0.9542 | 0.9274 | 0.7796 | 0.9383 | 0.9536 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.6.0+cu124
- Datasets 3.2.0
- Tokenizers 0.19.1
- Downloads last month
- 13
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for greenkwd/lr0.0001_bs16_0620_0942
Base model
nvidia/mit-b0