lr0.0001_bs16_0613_1406
This model is a fine-tuned version of nvidia/mit-b0 on the greenkwd/upwellingdetection_SST dataset. It achieves the following results on the evaluation set:
- Loss: 0.2475
- Mean Iou: 0.5250
- Mean Accuracy: 0.8644
- Overall Accuracy: 0.8974
- Accuracy Land: nan
- Accuracy Upwelling: 0.9447
- Accuracy Not Upwelling: 0.7842
- Iou Land: 0.0
- Iou Upwelling: 0.8812
- Iou Not Upwelling: 0.6937
- Dice Macro: 0.9072
- Dice Micro: 0.9350
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Land | Accuracy Upwelling | Accuracy Not Upwelling | Iou Land | Iou Upwelling | Iou Not Upwelling | Dice Macro | Dice Micro |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.9564 | 10.0 | 20 | 1.0348 | 0.3708 | 0.7051 | 0.7459 | nan | 0.8044 | 0.6058 | 0.0 | 0.6974 | 0.4150 | 0.6938 | 0.7353 |
0.7616 | 20.0 | 40 | 0.8405 | 0.4019 | 0.7384 | 0.7810 | nan | 0.8422 | 0.6346 | 0.0 | 0.7402 | 0.4655 | 0.7633 | 0.8127 |
0.6029 | 30.0 | 60 | 0.5523 | 0.4551 | 0.7901 | 0.8384 | nan | 0.9077 | 0.6725 | 0.0 | 0.8092 | 0.5561 | 0.8294 | 0.8753 |
0.4617 | 40.0 | 80 | 0.4134 | 0.4867 | 0.8413 | 0.8640 | nan | 0.8966 | 0.7859 | 0.0 | 0.8289 | 0.6311 | 0.8586 | 0.8934 |
0.434 | 50.0 | 100 | 0.3439 | 0.4928 | 0.8247 | 0.8760 | nan | 0.9496 | 0.6998 | 0.0 | 0.8534 | 0.6250 | 0.8750 | 0.9132 |
0.3962 | 60.0 | 120 | 0.3170 | 0.5029 | 0.8547 | 0.8784 | nan | 0.9125 | 0.7970 | 0.0 | 0.8492 | 0.6593 | 0.8833 | 0.9145 |
0.3269 | 70.0 | 140 | 0.2858 | 0.5009 | 0.8345 | 0.8798 | nan | 0.9447 | 0.7243 | 0.0 | 0.8623 | 0.6404 | 0.8874 | 0.9220 |
0.3104 | 80.0 | 160 | 0.2693 | 0.5131 | 0.8535 | 0.8893 | nan | 0.9409 | 0.7661 | 0.0 | 0.8677 | 0.6717 | 0.8960 | 0.9267 |
0.2788 | 90.0 | 180 | 0.2553 | 0.5210 | 0.8605 | 0.8971 | nan | 0.9497 | 0.7713 | 0.0 | 0.8738 | 0.6891 | 0.8998 | 0.9293 |
0.3077 | 100.0 | 200 | 0.2475 | 0.5250 | 0.8644 | 0.8974 | nan | 0.9447 | 0.7842 | 0.0 | 0.8812 | 0.6937 | 0.9072 | 0.9350 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.6.0+cu124
- Datasets 3.2.0
- Tokenizers 0.19.1
- Downloads last month
- 11
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for greenkwd/lr0.0001_bs16_0613_1406
Base model
nvidia/mit-b0