lr0.0001_bs16_0509_1312

This model is a fine-tuned version of nvidia/mit-b0 on the greenkwd/upwellingdetection_SST dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2346
  • Mean Iou: 0.4702
  • Mean Accuracy: 0.7945
  • Overall Accuracy: 0.8491
  • Accuracy Land: nan
  • Accuracy Upwelling: 0.9236
  • Accuracy Not Upwelling: 0.6653
  • Iou Land: 0.0
  • Iou Upwelling: 0.8435
  • Iou Not Upwelling: 0.5672
  • Dice Macro: 0.8549
  • Dice Micro: 0.9006

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Land Accuracy Upwelling Accuracy Not Upwelling Iou Land Iou Upwelling Iou Not Upwelling Dice Macro Dice Micro
1.0224 0.8 20 1.0716 0.2616 0.6381 0.5648 nan 0.4643 0.8118 0.0 0.4338 0.3512 0.4026 0.4031
0.8487 1.6 40 0.8774 0.3634 0.7053 0.7328 nan 0.7704 0.6401 0.0 0.6803 0.4100 0.7370 0.7857
0.6645 2.4 60 0.6208 0.3492 0.6305 0.7699 nan 0.9530 0.3081 0.0 0.7697 0.2779 0.7291 0.8378
0.5226 3.2 80 0.4942 0.3968 0.7026 0.7874 nan 0.9063 0.4989 0.0 0.7777 0.4126 0.7826 0.8537
0.4647 4.0 100 0.4295 0.4169 0.7317 0.8060 nan 0.9070 0.5563 0.0 0.7939 0.4569 0.7988 0.8628
0.4104 4.8 120 0.4055 0.4187 0.7283 0.8120 nan 0.9250 0.5317 0.0 0.8025 0.4536 0.7984 0.8648
0.4076 5.6 140 0.3841 0.4376 0.7729 0.8136 nan 0.8681 0.6777 0.0 0.7969 0.5158 0.8220 0.8712
0.3611 6.4 160 0.3652 0.4496 0.7873 0.8284 nan 0.8834 0.6912 0.0 0.8088 0.5399 0.8299 0.8778
0.3466 7.2 180 0.3495 0.4225 0.7280 0.8021 nan 0.9019 0.5541 0.0 0.8119 0.4555 0.8146 0.8766
0.316 8.0 200 0.3381 0.4442 0.7658 0.8281 nan 0.9124 0.6192 0.0 0.8165 0.5160 0.8267 0.8806
0.3123 8.8 220 0.3184 0.4373 0.7462 0.8308 nan 0.9466 0.5459 0.0 0.8237 0.4882 0.8241 0.8852
0.2886 9.6 240 0.3166 0.4363 0.7576 0.8086 nan 0.8777 0.6374 0.0 0.8098 0.4992 0.8289 0.8813
0.2959 10.4 260 0.3131 0.4434 0.7582 0.8353 nan 0.9365 0.5799 0.0 0.8254 0.5047 0.8258 0.8848
0.3001 11.2 280 0.3111 0.4340 0.7450 0.8179 nan 0.9193 0.5706 0.0 0.8163 0.4856 0.8245 0.8829
0.2919 12.0 300 0.3101 0.4393 0.7671 0.8110 nan 0.8704 0.6638 0.0 0.8048 0.5133 0.8314 0.8810
0.278 12.8 320 0.2937 0.4524 0.7805 0.8312 nan 0.9018 0.6592 0.0 0.8185 0.5388 0.8386 0.8867
0.3074 13.6 340 0.2927 0.4306 0.7307 0.8156 nan 0.9302 0.5312 0.0 0.8277 0.4642 0.8242 0.8882
0.3108 14.4 360 0.3043 0.4368 0.7757 0.8029 nan 0.8402 0.7113 0.0 0.7915 0.5188 0.8320 0.8779
0.27 15.2 380 0.2989 0.4213 0.7184 0.8130 nan 0.9439 0.4928 0.0 0.8205 0.4434 0.8139 0.8825
0.3288 16.0 400 0.3112 0.4528 0.7862 0.8387 nan 0.9099 0.6625 0.0 0.8140 0.5443 0.8258 0.8753
0.2526 16.8 420 0.2946 0.4308 0.7346 0.8193 nan 0.9347 0.5346 0.0 0.8235 0.4690 0.8221 0.8845
0.2689 17.6 440 0.2791 0.4499 0.7757 0.8242 nan 0.8900 0.6614 0.0 0.8202 0.5296 0.8395 0.8879
0.3047 18.4 460 0.2772 0.4528 0.7723 0.8334 nan 0.9157 0.6288 0.0 0.8292 0.5291 0.8380 0.8897
0.3546 19.2 480 0.3067 0.4285 0.7391 0.8287 nan 0.9508 0.5275 0.0 0.8128 0.4727 0.8096 0.8745
0.224 20.0 500 0.2791 0.4319 0.7308 0.8131 nan 0.9239 0.5377 0.0 0.8292 0.4665 0.8255 0.8882
0.2624 20.8 520 0.2736 0.4494 0.7785 0.8242 nan 0.8867 0.6702 0.0 0.8159 0.5322 0.8401 0.8882
0.2491 21.6 540 0.2672 0.4496 0.7653 0.8371 nan 0.9340 0.5966 0.0 0.8308 0.5180 0.8369 0.8916
0.2926 22.4 560 0.2667 0.4432 0.7516 0.8321 nan 0.9405 0.5628 0.0 0.8324 0.4970 0.8322 0.8912
0.2534 23.2 580 0.2677 0.4512 0.7708 0.8352 nan 0.9226 0.6190 0.0 0.8278 0.5258 0.8370 0.8898
0.2531 24.0 600 0.2684 0.4540 0.7836 0.8313 nan 0.8951 0.6720 0.0 0.8218 0.5401 0.8421 0.8899
0.2393 24.8 620 0.2700 0.4616 0.7955 0.8369 nan 0.8930 0.6979 0.0 0.8256 0.5590 0.8476 0.8923
0.2357 25.6 640 0.2564 0.4603 0.7816 0.8378 nan 0.9158 0.6474 0.0 0.8356 0.5453 0.8486 0.8960
0.2435 26.4 660 0.2563 0.4619 0.7909 0.8409 nan 0.9080 0.6738 0.0 0.8320 0.5537 0.8474 0.8940
0.2793 27.2 680 0.2757 0.4351 0.7415 0.8140 nan 0.9109 0.5722 0.0 0.8260 0.4792 0.8284 0.8879
0.2163 28.0 700 0.2602 0.4570 0.7851 0.8314 nan 0.8951 0.6751 0.0 0.8260 0.5450 0.8463 0.8925
0.2273 28.8 720 0.2529 0.4564 0.7740 0.8426 nan 0.9336 0.6143 0.0 0.8375 0.5318 0.8433 0.8960
0.2613 29.6 740 0.2543 0.4567 0.7808 0.8323 nan 0.9009 0.6607 0.0 0.8319 0.5382 0.8468 0.8953
0.2311 30.4 760 0.2539 0.4504 0.7604 0.8352 nan 0.9369 0.5840 0.0 0.8376 0.5135 0.8412 0.8966
0.2483 31.2 780 0.2849 0.4388 0.7510 0.8379 nan 0.9581 0.5439 0.0 0.8204 0.4960 0.8182 0.8802
0.2112 32.0 800 0.2497 0.4598 0.7804 0.8412 nan 0.9228 0.6379 0.0 0.8373 0.5422 0.8472 0.8970
0.257 32.8 820 0.2642 0.4447 0.7548 0.8339 nan 0.9422 0.5675 0.0 0.8280 0.5059 0.8314 0.8896
0.2268 33.6 840 0.2545 0.4558 0.7797 0.8354 nan 0.9116 0.6478 0.0 0.8287 0.5385 0.8440 0.8933
0.2334 34.4 860 0.2640 0.4396 0.7460 0.8321 nan 0.9509 0.5411 0.0 0.8302 0.4886 0.8290 0.8902
0.2394 35.2 880 0.2566 0.4641 0.8006 0.8399 nan 0.8936 0.7076 0.0 0.8250 0.5673 0.8486 0.8924
0.2852 36.0 900 0.2466 0.4586 0.7755 0.8400 nan 0.9282 0.6228 0.0 0.8392 0.5365 0.8470 0.8977
0.296 36.8 920 0.2572 0.4610 0.7861 0.8423 nan 0.9189 0.6533 0.0 0.8327 0.5502 0.8447 0.8933
0.2949 37.6 940 0.2540 0.4567 0.7721 0.8455 nan 0.9447 0.5996 0.0 0.8380 0.5322 0.8413 0.8956
0.2362 38.4 960 0.2623 0.4510 0.7679 0.8346 nan 0.9250 0.6108 0.0 0.8313 0.5218 0.8379 0.8906
0.2631 39.2 980 0.2531 0.4568 0.7765 0.8387 nan 0.9229 0.6301 0.0 0.8334 0.5370 0.8443 0.8951
0.229 40.0 1000 0.2603 0.4407 0.7461 0.8223 nan 0.9236 0.5686 0.0 0.8327 0.4893 0.8329 0.8913
0.2179 40.8 1020 0.2453 0.4590 0.7762 0.8446 nan 0.9368 0.6156 0.0 0.8390 0.5381 0.8449 0.8968
0.2275 41.6 1040 0.2491 0.4585 0.7844 0.8333 nan 0.9006 0.6682 0.0 0.8307 0.5447 0.8473 0.8937
0.2604 42.4 1060 0.2495 0.4487 0.7596 0.8425 nan 0.9507 0.5686 0.0 0.8363 0.5097 0.8351 0.8942
0.2399 43.2 1080 0.2494 0.4580 0.7756 0.8399 nan 0.9281 0.6232 0.0 0.8357 0.5385 0.8436 0.8948
0.2614 44.0 1100 0.2511 0.4538 0.7732 0.8272 nan 0.9018 0.6447 0.0 0.8327 0.5287 0.8449 0.8935
0.262 44.8 1120 0.2822 0.4439 0.7689 0.8344 nan 0.9233 0.6145 0.0 0.8129 0.5188 0.8258 0.8798
0.2294 45.6 1140 0.2567 0.4446 0.7557 0.8219 nan 0.9107 0.6008 0.0 0.8315 0.5023 0.8365 0.8908
0.246 46.4 1160 0.2547 0.4499 0.7619 0.8421 nan 0.9499 0.5740 0.0 0.8348 0.5149 0.8359 0.8932
0.2351 47.2 1180 0.2429 0.4587 0.7792 0.8312 nan 0.9019 0.6566 0.0 0.8371 0.5391 0.8494 0.8974
0.2752 48.0 1200 0.2516 0.4547 0.7749 0.8366 nan 0.9193 0.6304 0.0 0.8321 0.5319 0.8430 0.8943
0.228 48.8 1220 0.2569 0.4499 0.7788 0.8251 nan 0.8866 0.6710 0.0 0.8191 0.5307 0.8417 0.8904
0.2511 49.6 1240 0.2435 0.4663 0.7881 0.8477 nan 0.9296 0.6466 0.0 0.8407 0.5581 0.8507 0.8981
0.2357 50.4 1260 0.2345 0.4696 0.7917 0.8517 nan 0.9322 0.6513 0.0 0.8454 0.5632 0.8530 0.9011
0.2554 51.2 1280 0.2480 0.4593 0.7795 0.8454 nan 0.9341 0.6248 0.0 0.8351 0.5428 0.8418 0.8932
0.2418 52.0 1300 0.2593 0.4567 0.7817 0.8303 nan 0.8980 0.6655 0.0 0.8274 0.5426 0.8462 0.8926
0.2548 52.8 1320 0.2449 0.4596 0.7769 0.8423 nan 0.9301 0.6238 0.0 0.8399 0.5389 0.8465 0.8971
0.2386 53.6 1340 0.2531 0.4578 0.7723 0.8490 nan 0.9543 0.5903 0.0 0.8381 0.5353 0.8397 0.8937
0.2501 54.4 1360 0.2502 0.4671 0.7969 0.8453 nan 0.9119 0.6820 0.0 0.8354 0.5657 0.8494 0.8942
0.2368 55.2 1380 0.2409 0.4700 0.8035 0.8455 nan 0.9023 0.7047 0.0 0.8351 0.5749 0.8553 0.8982
0.234 56.0 1400 0.2360 0.4769 0.8078 0.8551 nan 0.9206 0.6950 0.0 0.8431 0.5874 0.8579 0.9010
0.2368 56.8 1420 0.2390 0.4770 0.8101 0.8563 nan 0.9187 0.7014 0.0 0.8419 0.5891 0.8557 0.8990
0.2126 57.6 1440 0.2444 0.4669 0.7930 0.8460 nan 0.9183 0.6677 0.0 0.8382 0.5625 0.8498 0.8964
0.2635 58.4 1460 0.2399 0.4671 0.7949 0.8442 nan 0.9110 0.6789 0.0 0.8389 0.5625 0.8527 0.8986
0.268 59.2 1480 0.2499 0.4682 0.7959 0.8515 nan 0.9264 0.6654 0.0 0.8377 0.5670 0.8467 0.8936
0.1881 60.0 1500 0.2337 0.4671 0.7881 0.8468 nan 0.9267 0.6494 0.0 0.8430 0.5583 0.8523 0.8996
0.215 60.8 1520 0.2359 0.4661 0.7926 0.8422 nan 0.9083 0.6768 0.0 0.8397 0.5586 0.8530 0.8989
0.1991 61.6 1540 0.2378 0.4683 0.7993 0.8452 nan 0.9067 0.6919 0.0 0.8370 0.5678 0.8531 0.8977
0.2195 62.4 1560 0.2426 0.4668 0.7893 0.8538 nan 0.9394 0.6392 0.0 0.8412 0.5591 0.8477 0.8973
0.2181 63.2 1580 0.2451 0.4664 0.7898 0.8506 nan 0.9316 0.6480 0.0 0.8400 0.5591 0.8469 0.8959
0.236 64.0 1600 0.2425 0.4622 0.7831 0.8475 nan 0.9342 0.6320 0.0 0.8384 0.5481 0.8454 0.8961
0.2326 64.8 1620 0.2393 0.4704 0.7997 0.8470 nan 0.9101 0.6893 0.0 0.8402 0.5709 0.8549 0.8992
0.2286 65.6 1640 0.2465 0.4559 0.7764 0.8326 nan 0.9072 0.6456 0.0 0.8339 0.5337 0.8442 0.8941
0.2152 66.4 1660 0.2473 0.4568 0.7765 0.8363 nan 0.9176 0.6354 0.0 0.8333 0.5373 0.8451 0.8949
0.2313 67.2 1680 0.2418 0.4650 0.7879 0.8484 nan 0.9310 0.6448 0.0 0.8387 0.5563 0.8473 0.8964
0.2197 68.0 1700 0.2468 0.4534 0.7648 0.8332 nan 0.9276 0.6021 0.0 0.8388 0.5215 0.8429 0.8952
0.2111 68.8 1720 0.2510 0.4509 0.7640 0.8298 nan 0.9207 0.6074 0.0 0.8324 0.5203 0.8402 0.8930
0.2473 69.6 1740 0.2370 0.4663 0.7898 0.8466 nan 0.9233 0.6564 0.0 0.8410 0.5578 0.8519 0.8994
0.2286 70.4 1760 0.2437 0.4635 0.7854 0.8456 nan 0.9269 0.6439 0.0 0.8382 0.5522 0.8476 0.8964
0.2636 71.2 1780 0.2367 0.4627 0.7860 0.8385 nan 0.9101 0.6619 0.0 0.8381 0.5499 0.8508 0.8979
0.2529 72.0 1800 0.2335 0.4719 0.8077 0.8456 nan 0.8964 0.7191 0.0 0.8377 0.5780 0.8585 0.9002
0.2449 72.8 1820 0.2304 0.4730 0.7986 0.8522 nan 0.9262 0.6710 0.0 0.8446 0.5745 0.8569 0.9019
0.2266 73.6 1840 0.2413 0.4644 0.7862 0.8500 nan 0.9361 0.6363 0.0 0.8401 0.5532 0.8463 0.8960
0.2214 74.4 1860 0.2405 0.4650 0.7841 0.8457 nan 0.9316 0.6367 0.0 0.8418 0.5532 0.8496 0.8981
0.2631 75.2 1880 0.2433 0.4625 0.7843 0.8444 nan 0.9257 0.6429 0.0 0.8362 0.5513 0.8476 0.8966
0.2177 76.0 1900 0.2318 0.4733 0.7991 0.8526 nan 0.9256 0.6726 0.0 0.8443 0.5758 0.8564 0.9010
0.2316 76.8 1920 0.2342 0.4724 0.7989 0.8518 nan 0.9240 0.6738 0.0 0.8437 0.5733 0.8557 0.9008
0.2241 77.6 1940 0.2343 0.4708 0.7970 0.8501 nan 0.9224 0.6715 0.0 0.8434 0.5690 0.8551 0.9006
0.247 78.4 1960 0.2449 0.4585 0.7772 0.8362 nan 0.9178 0.6366 0.0 0.8355 0.5399 0.8463 0.8955
0.2263 79.2 1980 0.2313 0.4776 0.8045 0.8571 nan 0.9286 0.6804 0.0 0.8490 0.5836 0.8588 0.9031
0.2188 80.0 2000 0.2353 0.4692 0.7913 0.8475 nan 0.9247 0.6579 0.0 0.8439 0.5636 0.8536 0.8999
0.2067 80.8 2020 0.2231 0.4807 0.8073 0.8589 nan 0.9278 0.6867 0.0 0.8546 0.5876 0.8627 0.9062
0.2392 81.6 2040 0.2293 0.4715 0.7941 0.8489 nan 0.9250 0.6633 0.0 0.8471 0.5673 0.8572 0.9022
0.2267 82.4 2060 0.2376 0.4692 0.7956 0.8497 nan 0.9225 0.6687 0.0 0.8408 0.5667 0.8518 0.8981
0.2264 83.2 2080 0.2352 0.4737 0.8011 0.8525 nan 0.9226 0.6796 0.0 0.8441 0.5769 0.8551 0.9002
0.2402 84.0 2100 0.2329 0.4650 0.7862 0.8442 nan 0.9213 0.6511 0.0 0.8429 0.5520 0.8521 0.9006
0.2247 84.8 2120 0.2410 0.4584 0.7806 0.8324 nan 0.9037 0.6576 0.0 0.8334 0.5418 0.8482 0.8955
0.2154 85.6 2140 0.2317 0.4718 0.7968 0.8464 nan 0.9148 0.6788 0.0 0.8449 0.5705 0.8587 0.9025
0.2332 86.4 2160 0.2354 0.4704 0.7971 0.8485 nan 0.9179 0.6763 0.0 0.8414 0.5698 0.8544 0.8996
0.2355 87.2 2180 0.2396 0.4580 0.7733 0.8377 nan 0.9252 0.6215 0.0 0.8392 0.5346 0.8461 0.8969
0.2708 88.0 2200 0.2349 0.4683 0.7961 0.8461 nan 0.9137 0.6784 0.0 0.8400 0.5647 0.8531 0.8985
0.2443 88.8 2220 0.2378 0.4681 0.7904 0.8478 nan 0.9270 0.6538 0.0 0.8414 0.5630 0.8533 0.9001
0.2212 89.6 2240 0.2330 0.4701 0.7936 0.8496 nan 0.9231 0.6642 0.0 0.8473 0.5629 0.8538 0.9006
0.2197 90.4 2260 0.2304 0.4750 0.8044 0.8526 nan 0.9173 0.6916 0.0 0.8445 0.5804 0.8582 0.9016
0.2235 91.2 2280 0.2308 0.4699 0.7920 0.8506 nan 0.9293 0.6547 0.0 0.8460 0.5638 0.8539 0.9011
0.2169 92.0 2300 0.2264 0.4761 0.8042 0.8556 nan 0.9243 0.6841 0.0 0.8479 0.5805 0.8594 0.9035
0.2196 92.8 2320 0.2350 0.4674 0.7891 0.8497 nan 0.9307 0.6475 0.0 0.8432 0.5590 0.8502 0.8986
0.2096 93.6 2340 0.2321 0.4695 0.7955 0.8476 nan 0.9179 0.6731 0.0 0.8420 0.5666 0.8551 0.9005
0.2226 94.4 2360 0.2262 0.4719 0.7947 0.8540 nan 0.9335 0.6558 0.0 0.8474 0.5682 0.8553 0.9027
0.2295 95.2 2380 0.2274 0.4739 0.8012 0.8523 nan 0.9221 0.6803 0.0 0.8446 0.5770 0.8578 0.9020
0.2568 96.0 2400 0.2471 0.4599 0.7805 0.8386 nan 0.9173 0.6437 0.0 0.8370 0.5426 0.8456 0.8947
0.2186 96.8 2420 0.2241 0.4748 0.7996 0.8549 nan 0.9298 0.6694 0.0 0.8477 0.5765 0.8590 0.9040
0.2368 97.6 2440 0.2396 0.4661 0.7877 0.8446 nan 0.9215 0.6540 0.0 0.8437 0.5546 0.8509 0.8980
0.2295 98.4 2460 0.2381 0.4644 0.7892 0.8445 nan 0.9187 0.6597 0.0 0.8375 0.5556 0.8486 0.8963
0.2212 99.2 2480 0.2342 0.4741 0.7993 0.8522 nan 0.9240 0.6746 0.0 0.8468 0.5756 0.8565 0.9015
0.2186 100.0 2500 0.2346 0.4702 0.7945 0.8491 nan 0.9236 0.6653 0.0 0.8435 0.5672 0.8549 0.9006

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.6.0+cu124
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
10
Safetensors
Model size
3.72M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for greenkwd/lr0.0001_bs16_0509_1312

Base model

nvidia/mit-b0
Finetuned
(403)
this model