reward
This model is a fine-tuned version of allenai/Llama-3.1-Tulu-3-8B-SFT on the persona-math-filtered-64-llama-factory_tulu-3-sft-personas-math-filtered_llama-3.1-tulu-3-8b-sft_64_1_train dataset. It achieves the following results on the evaluation set:
- Loss: 0.4257
- Accuracy: 0.7768
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 32
- total_train_batch_size: 256
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.9289 | 0.0168 | 5 | 0.8277 | 0.5503 |
0.7032 | 0.0337 | 10 | 0.6998 | 0.6352 |
0.735 | 0.0505 | 15 | 0.6130 | 0.644 |
0.6398 | 0.0674 | 20 | 0.5657 | 0.6743 |
0.5123 | 0.0842 | 25 | 0.5579 | 0.695 |
0.5098 | 0.1011 | 30 | 0.5404 | 0.7025 |
0.5597 | 0.1179 | 35 | 0.5175 | 0.7133 |
0.4819 | 0.1347 | 40 | 0.5116 | 0.7248 |
0.4874 | 0.1516 | 45 | 0.5042 | 0.7285 |
0.5318 | 0.1684 | 50 | 0.5086 | 0.7292 |
0.4955 | 0.1853 | 55 | 0.5065 | 0.7282 |
0.4956 | 0.2021 | 60 | 0.4871 | 0.7405 |
0.5021 | 0.2189 | 65 | 0.4891 | 0.741 |
0.5192 | 0.2358 | 70 | 0.5081 | 0.728 |
0.4748 | 0.2526 | 75 | 0.4904 | 0.7352 |
0.4881 | 0.2695 | 80 | 0.4838 | 0.7395 |
0.5092 | 0.2863 | 85 | 0.4938 | 0.7345 |
0.4971 | 0.3032 | 90 | 0.4835 | 0.7372 |
0.4878 | 0.32 | 95 | 0.4705 | 0.7472 |
0.4762 | 0.3368 | 100 | 0.4720 | 0.7365 |
0.4511 | 0.3537 | 105 | 0.4958 | 0.733 |
0.5213 | 0.3705 | 110 | 0.4826 | 0.7412 |
0.4569 | 0.3874 | 115 | 0.4830 | 0.7455 |
0.4919 | 0.4042 | 120 | 0.4627 | 0.7498 |
0.4853 | 0.4211 | 125 | 0.4565 | 0.7508 |
0.4638 | 0.4379 | 130 | 0.4577 | 0.748 |
0.4941 | 0.4547 | 135 | 0.4549 | 0.75 |
0.4661 | 0.4716 | 140 | 0.4552 | 0.7578 |
0.4886 | 0.4884 | 145 | 0.4508 | 0.755 |
0.4433 | 0.5053 | 150 | 0.4468 | 0.7655 |
0.4819 | 0.5221 | 155 | 0.4552 | 0.7555 |
0.4794 | 0.5389 | 160 | 0.4604 | 0.7565 |
0.4272 | 0.5558 | 165 | 0.4549 | 0.757 |
0.4615 | 0.5726 | 170 | 0.4579 | 0.7612 |
0.4417 | 0.5895 | 175 | 0.4460 | 0.758 |
0.4275 | 0.6063 | 180 | 0.4453 | 0.7652 |
0.4303 | 0.6232 | 185 | 0.4468 | 0.7628 |
0.4286 | 0.64 | 190 | 0.4397 | 0.7715 |
0.4655 | 0.6568 | 195 | 0.4369 | 0.7675 |
0.386 | 0.6737 | 200 | 0.4416 | 0.7618 |
0.4129 | 0.6905 | 205 | 0.4336 | 0.767 |
0.3851 | 0.7074 | 210 | 0.4335 | 0.77 |
0.4516 | 0.7242 | 215 | 0.4339 | 0.7742 |
0.3995 | 0.7411 | 220 | 0.4313 | 0.7715 |
0.3488 | 0.7579 | 225 | 0.4322 | 0.7698 |
0.4874 | 0.7747 | 230 | 0.4299 | 0.7732 |
0.4217 | 0.7916 | 235 | 0.4288 | 0.7708 |
0.4295 | 0.8084 | 240 | 0.4299 | 0.771 |
0.4777 | 0.8253 | 245 | 0.4318 | 0.7678 |
0.4612 | 0.8421 | 250 | 0.4271 | 0.772 |
0.4576 | 0.8589 | 255 | 0.4309 | 0.771 |
0.3921 | 0.8758 | 260 | 0.4333 | 0.7722 |
0.4372 | 0.8926 | 265 | 0.4302 | 0.7722 |
0.5449 | 0.9095 | 270 | 0.4335 | 0.7695 |
0.4428 | 0.9263 | 275 | 0.4311 | 0.7728 |
0.4395 | 0.9432 | 280 | 0.4287 | 0.7745 |
0.4674 | 0.96 | 285 | 0.4262 | 0.776 |
0.4225 | 0.9768 | 290 | 0.4257 | 0.7765 |
0.4262 | 0.9937 | 295 | 0.4258 | 0.7762 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 10
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for graf/Llama-3.1-Tulu-3-8B-SFT-MATH-RM
Base model
meta-llama/Llama-3.1-8B
Finetuned
allenai/Llama-3.1-Tulu-3-8B-SFT