reward
This model is a fine-tuned version of meta-llama/Llama-3.1-8B-Instruct on the gsm8k_llama3.1-8B_128_1ep dataset. It achieves the following results on the evaluation set:
- Loss: 0.2467
- val Accuracy: 0.8810
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss | val Accuracy |
---|---|---|---|---|
0.609 | 0.0856 | 5 | 0.4890 | 0.8135 |
0.3044 | 0.1711 | 10 | 0.2622 | 0.9204 |
0.3091 | 0.2567 | 15 | 0.1574 | 0.9060 |
0.2377 | 0.3422 | 20 | 0.2161 | 0.9090 |
0.2227 | 0.4278 | 25 | 0.2810 | 0.8696 |
0.3034 | 0.5134 | 30 | 0.2796 | 0.8832 |
0.2101 | 0.5989 | 35 | 0.2074 | 0.9022 |
0.2027 | 0.6845 | 40 | 0.1866 | 0.9075 |
0.2683 | 0.7701 | 45 | 0.2167 | 0.8976 |
0.1873 | 0.8556 | 50 | 0.2340 | 0.8878 |
0.2984 | 0.9412 | 55 | 0.2451 | 0.8825 |
Framework versions
- Transformers 4.46.1
- Pytorch 2.5.1
- Datasets 3.1.0
- Tokenizers 0.20.1
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for graf/Llama-3.1-GSM8K-8B-RM
Base model
meta-llama/Llama-3.1-8B
Finetuned
meta-llama/Llama-3.1-8B-Instruct