reward

This model is a fine-tuned version of meta-llama/Llama-3.1-8B-Instruct on the gsm8k_llama3.1-8B_128_1ep dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2467
  • val Accuracy: 0.8810

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 128
  • total_eval_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 1.0

Training results

Training Loss Epoch Step Validation Loss val Accuracy
0.609 0.0856 5 0.4890 0.8135
0.3044 0.1711 10 0.2622 0.9204
0.3091 0.2567 15 0.1574 0.9060
0.2377 0.3422 20 0.2161 0.9090
0.2227 0.4278 25 0.2810 0.8696
0.3034 0.5134 30 0.2796 0.8832
0.2101 0.5989 35 0.2074 0.9022
0.2027 0.6845 40 0.1866 0.9075
0.2683 0.7701 45 0.2167 0.8976
0.1873 0.8556 50 0.2340 0.8878
0.2984 0.9412 55 0.2451 0.8825

Framework versions

  • Transformers 4.46.1
  • Pytorch 2.5.1
  • Datasets 3.1.0
  • Tokenizers 0.20.1
Downloads last month
4
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for graf/Llama-3.1-GSM8K-8B-RM

Finetuned
(1101)
this model