language: en | |
license: mit | |
tags: | |
- GECToR_gotutiyan | |
# gector sample | |
This is an unofficial pretrained model of GECToR ([Omelianchuk+ 2020](https://aclanthology.org/2020.bea-1.16/)). | |
### How to use | |
The code is avaliable from https://github.com/gotutiyan/gector. | |
CLI | |
```sh | |
python predict.py --input <raw text file> --restore_dir gotutiyan/gector-bert-base-cased-5k --out <path to output file> | |
``` | |
API | |
```py | |
from transformers import AutoTokenizer | |
from gector.modeling import GECToR | |
from gector.predict import predict, load_verb_dict | |
import torch | |
model_id = 'gotutiyan/gector-bert-base-cased-5k' | |
model = GECToR.from_pretrained(model_id) | |
if torch.cuda.is_available(): | |
model.cuda() | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
encode, decode = load_verb_dict('data/verb-form-vocab.txt') | |
srcs = [ | |
'This is a correct sentence.', | |
'This are a wrong sentences' | |
] | |
corrected = predict( | |
model, tokenizer, srcs, | |
encode, decode, | |
keep_confidence=0.0, | |
min_error_prob=0.0, | |
n_iteration=5, | |
batch_size=2, | |
) | |
print(corrected) | |
``` | |