Update the demo code without the post-processing steps and with the new API
#1
by
multimodalart
HF staff
- opened
README.md
CHANGED
@@ -19,25 +19,17 @@ tags:
|
|
19 |
```python
|
20 |
# !pip install diffusers
|
21 |
from diffusers import DiffusionPipeline
|
22 |
-
import PIL.Image
|
23 |
-
import numpy as np
|
24 |
|
25 |
-
model_id = "google/ddpm-
|
26 |
|
27 |
# load model and scheduler
|
28 |
ddpm = DiffusionPipeline.from_pretrained(model_id)
|
29 |
|
30 |
# run pipeline in inference (sample random noise and denoise)
|
31 |
-
|
32 |
-
|
33 |
-
# process image to PIL
|
34 |
-
image_processed = image.cpu().permute(0, 2, 3, 1)
|
35 |
-
image_processed = (image_processed + 1.0) * 127.5
|
36 |
-
image_processed = image_processed.numpy().astype(np.uint8)
|
37 |
-
image_pil = PIL.Image.fromarray(image_processed[0])
|
38 |
|
39 |
# save image
|
40 |
-
|
41 |
```
|
42 |
|
43 |
## Samples
|
|
|
19 |
```python
|
20 |
# !pip install diffusers
|
21 |
from diffusers import DiffusionPipeline
|
|
|
|
|
22 |
|
23 |
+
model_id = "google/ddpm-celebahq-256"
|
24 |
|
25 |
# load model and scheduler
|
26 |
ddpm = DiffusionPipeline.from_pretrained(model_id)
|
27 |
|
28 |
# run pipeline in inference (sample random noise and denoise)
|
29 |
+
images = ddpm()["sample"]
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
# save image
|
32 |
+
images[0].save("ddpm_generated_image.png")
|
33 |
```
|
34 |
|
35 |
## Samples
|