goodcasper's picture
End of training
f8b4ed8 verified
metadata
library_name: transformers
license: apache-2.0
base_model: PekingU/rtdetr_r18vd_coco_o365
tags:
  - generated_from_trainer
model-index:
  - name: kvasir_seg_rtdetr_r18_test_fps
    results: []

kvasir_seg_rtdetr_r18_test_fps

This model is a fine-tuned version of PekingU/rtdetr_r18vd_coco_o365 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 6.4708
  • Map: 0.5375
  • Map 50: 0.7037
  • Map 75: 0.6008
  • Map Small: 0.0
  • Map Medium: 0.2762
  • Map Large: 0.5563
  • Mar 1: 0.6024
  • Mar 10: 0.8218
  • Mar 100: 0.9209
  • Mar Small: 0.0
  • Mar Medium: 0.78
  • Mar Large: 0.9325
  • Map Polyp: 0.5375
  • Mar 100 Polyp: 0.9209

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 300
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Polyp Mar 100 Polyp
188.8938 1.0 100 35.3914 0.045 0.0921 0.0405 0.0 0.0001 0.0612 0.1175 0.3521 0.6398 0.0 0.09 0.6705 0.045 0.6398
20.5545 2.0 200 13.3860 0.0707 0.1207 0.0633 0.0 0.0164 0.0763 0.2 0.5607 0.8398 0.0 0.63 0.8545 0.0707 0.8398
12.8462 3.0 300 8.8009 0.251 0.3922 0.2349 0.0 0.1155 0.263 0.3758 0.7171 0.8782 0.0 0.71 0.891 0.251 0.8782
11.3 4.0 400 8.9424 0.2968 0.4137 0.3193 0.0 0.2263 0.3046 0.3929 0.7687 0.9038 0.0 0.77 0.915 0.2968 0.9038
10.3262 5.0 500 7.8881 0.2819 0.4434 0.3041 0.0 0.2255 0.2897 0.4223 0.7374 0.8839 0.0 0.57 0.904 0.2819 0.8839
9.4336 6.0 600 7.9411 0.3048 0.4533 0.3209 0.0 0.2202 0.3159 0.4649 0.7934 0.9024 0.0 0.76 0.914 0.3048 0.9024
8.996 7.0 700 7.2079 0.4942 0.6964 0.5359 0.0 0.2982 0.5086 0.5531 0.7995 0.9171 0.0 0.74 0.9305 0.4942 0.9171
8.3482 8.0 800 6.5042 0.4987 0.6906 0.5471 0.0 0.2387 0.5154 0.5768 0.8095 0.9095 0.0 0.75 0.922 0.4987 0.9095
7.9702 9.0 900 6.4708 0.5375 0.7037 0.6008 0.0 0.2762 0.5563 0.6024 0.8218 0.9209 0.0 0.78 0.9325 0.5375 0.9209
7.7992 10.0 1000 6.3745 0.5317 0.7162 0.5988 0.0 0.2473 0.551 0.5953 0.8299 0.9223 0.0 0.76 0.935 0.5317 0.9223

Framework versions

  • Transformers 4.53.0.dev0
  • Pytorch 2.7.1+cu126
  • Datasets 3.6.0
  • Tokenizers 0.21.1