metadata
library_name: transformers
license: apache-2.0
base_model: google/bert_uncased_L-4_H-512_A-8
tags:
- generated_from_trainer
datasets:
- gokulsrinivasagan/processed_wikitext-103-raw-v1-ld
metrics:
- accuracy
model-index:
- name: tinybert_base_train_book_ent_15p_s_init
results:
- task:
name: Masked Language Modeling
type: fill-mask
dataset:
name: gokulsrinivasagan/processed_wikitext-103-raw-v1-ld
type: gokulsrinivasagan/processed_wikitext-103-raw-v1-ld
metrics:
- name: Accuracy
type: accuracy
value: 0.1853157281132229
tinybert_base_train_book_ent_15p_s_init
This model is a fine-tuned version of google/bert_uncased_L-4_H-512_A-8 on the gokulsrinivasagan/processed_wikitext-103-raw-v1-ld dataset. It achieves the following results on the evaluation set:
- Loss: 5.6359
- Accuracy: 0.1853
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 200
- eval_batch_size: 200
- seed: 10
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10000
- num_epochs: 24
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
5.3929 | 8.7413 | 10000 | 5.9672 | 0.1618 |
5.8297 | 17.4825 | 20000 | 5.6359 | 0.1853 |
Framework versions
- Transformers 4.51.2
- Pytorch 2.6.0+cu126
- Datasets 3.5.0
- Tokenizers 0.21.1