bert_uncased_L-4_H-128_A-2_sst2
This model is a fine-tuned version of google/bert_uncased_L-4_H-128_A-2 on the GLUE SST2 dataset. It achieves the following results on the evaluation set:
- Loss: 0.4254
- Accuracy: 0.8131
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.497 | 1.0 | 264 | 0.4757 | 0.7787 |
0.3535 | 2.0 | 528 | 0.4270 | 0.8108 |
0.2951 | 3.0 | 792 | 0.4281 | 0.8211 |
0.2539 | 4.0 | 1056 | 0.4254 | 0.8131 |
0.2259 | 5.0 | 1320 | 0.4344 | 0.8257 |
0.2048 | 6.0 | 1584 | 0.4487 | 0.8314 |
0.1892 | 7.0 | 1848 | 0.4820 | 0.8222 |
0.1754 | 8.0 | 2112 | 0.4954 | 0.8349 |
0.1643 | 9.0 | 2376 | 0.4869 | 0.8222 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.2.1+cu118
- Datasets 2.17.0
- Tokenizers 0.20.3
- Downloads last month
- 13
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for gokulsrinivasagan/bert_uncased_L-4_H-128_A-2_sst2
Base model
google/bert_uncased_L-4_H-128_A-2