bert_uncased_L-4_H-128_A-2_mrpc

This model is a fine-tuned version of google/bert_uncased_L-4_H-128_A-2 on the GLUE MRPC dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5327
  • Accuracy: 0.7574
  • F1: 0.8401
  • Combined Score: 0.7987

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 10
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Combined Score
0.6437 1.0 15 0.6181 0.6838 0.8122 0.7480
0.6197 2.0 30 0.6047 0.6912 0.8158 0.7535
0.595 3.0 45 0.5877 0.6985 0.8161 0.7573
0.582 4.0 60 0.5687 0.7279 0.8284 0.7782
0.5617 5.0 75 0.5594 0.7279 0.8295 0.7787
0.5409 6.0 90 0.5550 0.7132 0.8208 0.7670
0.5213 7.0 105 0.5417 0.7255 0.8245 0.7750
0.4968 8.0 120 0.5530 0.7328 0.8310 0.7819
0.4741 9.0 135 0.5580 0.7353 0.8333 0.7843
0.4545 10.0 150 0.5390 0.7549 0.8397 0.7973
0.4366 11.0 165 0.5327 0.7574 0.8401 0.7987
0.4206 12.0 180 0.5350 0.7598 0.8424 0.8011
0.397 13.0 195 0.5649 0.7549 0.8447 0.7998
0.3873 14.0 210 0.5602 0.7623 0.8482 0.8052
0.3725 15.0 225 0.5622 0.7525 0.8399 0.7962
0.3506 16.0 240 0.5588 0.7525 0.8374 0.7949

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.2.1+cu118
  • Datasets 2.17.0
  • Tokenizers 0.20.3
Downloads last month
9
Safetensors
Model size
4.78M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for gokulsrinivasagan/bert_uncased_L-4_H-128_A-2_mrpc

Finetuned
(13)
this model

Dataset used to train gokulsrinivasagan/bert_uncased_L-4_H-128_A-2_mrpc

Evaluation results