bert_uncased_L-4_H-128_A-2_mnli

This model is a fine-tuned version of google/bert_uncased_L-4_H-128_A-2 on the GLUE MNLI dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6425
  • Accuracy: 0.7331

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 10
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.8752 1.0 1534 0.7743 0.6558
0.7714 2.0 3068 0.7263 0.6857
0.7255 3.0 4602 0.6946 0.7020
0.6927 4.0 6136 0.6789 0.7087
0.6662 5.0 7670 0.6657 0.7205
0.6441 6.0 9204 0.6691 0.7229
0.625 7.0 10738 0.6622 0.7258
0.607 8.0 12272 0.6531 0.7314
0.5894 9.0 13806 0.6613 0.7308
0.5754 10.0 15340 0.6591 0.7293
0.5615 11.0 16874 0.6635 0.7287
0.5477 12.0 18408 0.6701 0.7344
0.5343 13.0 19942 0.6699 0.7343

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.2.1+cu118
  • Datasets 2.17.0
  • Tokenizers 0.20.3
Downloads last month
13
Safetensors
Model size
4.78M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for gokulsrinivasagan/bert_uncased_L-4_H-128_A-2_mnli

Finetuned
(13)
this model

Dataset used to train gokulsrinivasagan/bert_uncased_L-4_H-128_A-2_mnli

Evaluation results