bert_uncased_L-4_H-128_A-2_mnli
This model is a fine-tuned version of google/bert_uncased_L-4_H-128_A-2 on the GLUE MNLI dataset. It achieves the following results on the evaluation set:
- Loss: 0.6425
- Accuracy: 0.7331
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.8752 | 1.0 | 1534 | 0.7743 | 0.6558 |
0.7714 | 2.0 | 3068 | 0.7263 | 0.6857 |
0.7255 | 3.0 | 4602 | 0.6946 | 0.7020 |
0.6927 | 4.0 | 6136 | 0.6789 | 0.7087 |
0.6662 | 5.0 | 7670 | 0.6657 | 0.7205 |
0.6441 | 6.0 | 9204 | 0.6691 | 0.7229 |
0.625 | 7.0 | 10738 | 0.6622 | 0.7258 |
0.607 | 8.0 | 12272 | 0.6531 | 0.7314 |
0.5894 | 9.0 | 13806 | 0.6613 | 0.7308 |
0.5754 | 10.0 | 15340 | 0.6591 | 0.7293 |
0.5615 | 11.0 | 16874 | 0.6635 | 0.7287 |
0.5477 | 12.0 | 18408 | 0.6701 | 0.7344 |
0.5343 | 13.0 | 19942 | 0.6699 | 0.7343 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.2.1+cu118
- Datasets 2.17.0
- Tokenizers 0.20.3
- Downloads last month
- 13
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for gokulsrinivasagan/bert_uncased_L-4_H-128_A-2_mnli
Base model
google/bert_uncased_L-4_H-128_A-2